版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市南安霞溪中学高一数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.点在所在平面上,若,则点是的(
)(A)三条中线交点
(B)三条高线交点
(C)三条边的中垂线交点(D)三条角分线交点
参考答案:B略2.若,是方程的两个根,则(
)A.
B.
C.
D.参考答案:D略3.已知是上减函数,则的取值范围是(
)A.(0,1)
B.
C.
D.参考答案:B4.若α,β∈(0,),cos(α-,sin(-β)=-,则cos(α+β)的值等于
(
)参考答案:B略5.下列给出函数与各组中,是同一个关于的函数的是(
)A.
B.C.
D.参考答案:C略6.函数的定义域是(
)A.
B.
C.
D.参考答案:C7.如图为一平面图形的直观图,则此平面图形可能是选项中的()A. B. C. D.参考答案:C【考点】LD:斜二测法画直观图.【分析】观察直观图右边的边与纵轴平行,与x轴垂直,由直观图得出原图形上下两条边是不相等的,从而得出答案.【解答】解:设直观图中与x′轴和y′轴的交点分别为A′和B′,根据斜二测画法的规则在直角坐标系中先做出对应的A和B点,再由平行与x′轴的线在原图中平行于x轴,且长度不变,作出原图如图所示,可知是图C.故选:C.8.设全集是实数集,,且,则实数的取值范围为(
)A.
B.
C.
D.参考答案:C9.下列函数中,在区间内有零点且单调递增的是
A.
B.
C.
D.
参考答案:C10.若集合A={x|kx2+4x+4=0,x∈R}只有一个元素,则实数k的值为()A.0
B.1C.0或1
D.2参考答案:C解析:集合A中只有一个元素,即方程kx2+4x+4=0只有一个根.当k=0时,方程为一元一次方程,只有一个根;当k≠0时,方程为一元二次方程,若只有一根,则Δ=16-16k=0,即k=1.所以实数k的值为0或1.二、填空题:本大题共7小题,每小题4分,共28分11.(5分)已知函数f(x+1)是偶函数,且当x≥1时,f(x)=,若实数a满足f(2a)>f(a+1),则a的取值范围是
.参考答案:考点: 函数奇偶性的性质.专题: 函数的性质及应用.分析: 先根据y=f(x+1)是偶函数判断出函数f(x)关于直线x=1对称,然后再判断函数f(x)在[1,+∞)上的单调性,再结合对称性即可得到关于a的不等式,解之即可.解答: 因为y=f(x+1)是偶函数,所以函数f(x)关于直线x=1对称,当1≤x≤2时,f(x)=﹣(x﹣1)2+1,在[1,2]上是减函数,且f(2)=0;当x>2时,f(x)=﹣ln(x﹣1)也是减函数,且当x→2时,f(x)→0,故函数在[1,+∞)上为减函数,结合函数的奇偶性可知,f(x)在(﹣∞,1]上增函数,且关于x=1对称,所以由f(2a)>f(a+1)可得,|2a﹣1|<|a+1﹣1|,即|2a﹣1|<|a|,即3a2﹣4a+1<0,解得().故答案为:.点评: 本题考查了分段函数条件下的不等式问题,因为涉及到函数的奇偶性,因此应研究函数的单调性构造关于a的不等式.12.把化为的形式即为_______________.
参考答案:13.圆与圆外切,则m的值为
参考答案:
14.如图,在正方体ABCD-A1B1C1D1中,有以下结论:①平面;②平面;③;④异面直线与所成的角为60°.则其中正确结论的序号是____(写出所有正确结论的序号).参考答案:①③【分析】①:利用线面平行的判定定理可以直接判断是正确的结论;②:举反例可以判断出该结论是错误的;③:可以利用线面垂直的判定定理,得到线面垂直,再利用线面垂直的性质定理可以判断是正确的结论;④:可以通过,可以判断出异面直线与所成的角为,即本结论是错误的,最后选出正确的结论序号.【详解】①:平面,平面平面,故本结论是正确的;②:在正方形中,,显然不垂直,而,所以不互相垂直,要是平面,则必有互相垂直,显然是不可能的,故本结论是错误的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本结论是正确的;④:因为,所以异面直线与所成的角为,在正方形中,,故本结论是错误的,因此正确结论的序号是①③.【点睛】本题考查了线面平行的判定定理、线面垂直的判定定理、性质定理,考查了异面直线所成的角、线面垂直的性质.15.函数的值域为
.
参考答案:
16.已知直线l经过点(7,1)且在两坐标轴上的截距互为相反数,则直线l的方程
参考答案:x-7y=0或x-y-6=0.略17.已知函数
若函数有3个零点,则实数的取值范围是_______________.
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题10分)正方体ABCD-A1B1C1D1的棱长为1.求AB与B1C所成的角;参考答案:∵AB∥CD,∴∠B1CD为AB和B1C所成的角,∵DC⊥平面BB1C1C,
∴DC⊥B1C,
于是∠B1CD=90°,∴AB与B1C所成的角为90°.19.已知函数是定义在上的偶函数,当时,。(1)求的函数解析式,并用分段函数的形式给出;(2)作出函数的简图;(3)写出函数的单调区间及最值.参考答案:(1)当时,,
则
是偶函数
∴
.
(如果通过图象直接给对解析式得2分)(2)函数的简图:
(3)单调增区间为和
单调减区间为和
当或时,有最小值-2.略20.某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?最大利润是多少?参考答案:【考点】7D:简单线性规划的应用.【分析】先设每天生产A型桌子x张,B型桌子y张,利润总额为z千元,根据题意抽象出x,y满足的条件,建立约束条件,作出可行域,再根据目标函数z=2x+3y,利用线性规划的知识进行求解即可.【解答】解:设每天生产A型桌子x张,B型桌子y张,利润总额为z千元,则,目标函数为:z=2x+3y作出可行域:把直线l:2x+3y=0向右上方平移,直线经过可行域上的点B,且与原点距离最大,此时z=2x+3y取最大值,解方程,得B的坐标为(2,3).此时z=2×2+3×3=13(千元).答:每天应生产A型桌子2张,B型桌子3张才能获得最大利润.最大利润为13千元.【点评】本题主要考查用线性规划解决实际问题中的最值问题,基本思路是抽象约束条件,作出可行域,利用目标函数的类型,找到最优解.属
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xx化学级氧化铝项目可行性研究报告(立项备案)
- 年产xx垃圾焚烧炉项目建议书
- 2022-2023学年广东省深圳市福田区三年级(上)期末英语试卷
- 2024年造纸印染污染治理项目资金筹措计划书代可行性研究报告
- 2023-2024学年广东省深圳市罗湖区五年级(上)期末英语试卷
- 大班社会公开课教案详案《闪光的国粹》
- 脑出血预见性护理
- 电信综合维护安全培训
- 团培训结业报告
- 美术学科小培训
- GIS超高频局部放电典型图谱(共14页)
- (完整版)篮球校本课程教材
- 水产品保鲜技术论文范文
- 柔性基层沥青路面
- 真崎航の21部
- 临床护理技术操作常见并发症的预防和处理规范(完整版)
- 隧洞专项施工方案(完整版)
- 继电保护课程设计对变压器进行相关保护的设计abrg
- 挖机租赁台班表.doc
- 湖南中医药大学成人教育毕业生鉴定表
- 项目验收文件清单(硬件采购类)
评论
0/150
提交评论