怒江市重点中学2023-2024学年高三第一次模拟考试数学试卷含解析_第1页
怒江市重点中学2023-2024学年高三第一次模拟考试数学试卷含解析_第2页
怒江市重点中学2023-2024学年高三第一次模拟考试数学试卷含解析_第3页
怒江市重点中学2023-2024学年高三第一次模拟考试数学试卷含解析_第4页
怒江市重点中学2023-2024学年高三第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

怒江市重点中学2023-2024学年高三第一次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是()A. B. C. D.2.如图所示的程序框图,若输入,,则输出的结果是()A. B. C. D.3.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()A. B. C. D.4.已知数列为等差数列,且,则的值为()A. B. C. D.5.已知是第二象限的角,,则()A. B. C. D.6.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为()A. B.C. D.7.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是()A. B. C. D.以上都不对8.函数图象的大致形状是()A. B.C. D.9.已知函数,当时,恒成立,则的取值范围为()A. B. C. D.10.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.11.计算等于()A. B. C. D.12.如图,在△ABC中,点M是边BC的中点,将△ABM沿着AM翻折成△AB'M,且点B'不在平面AMC内,点P是线段B'C上一点.若二面角P-AM-B'与二面角P-AM-C的平面角相等,则直线AP经过△AB'CA.重心 B.垂心 C.内心 D.外心二、填空题:本题共4小题,每小题5分,共20分。13.集合,,则_____.14.若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有___________.(填上所有正确答案的序号)①,,;②,,;③,,;④,,.15.三个小朋友之间送礼物,约定每人送出一份礼物给另外两人中的一人(送给两个人的可能性相同),则三人都收到礼物的概率为______.16.已知函数,则曲线在点处的切线方程是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)定义:若数列满足所有的项均由构成且其中有个,有个,则称为“﹣数列”.(1)为“﹣数列”中的任意三项,则使得的取法有多少种?(2)为“﹣数列”中的任意三项,则存在多少正整数对使得且的概率为.18.(12分)在平面直角坐标系xOy中,曲线的参数方程为(为参数).以平面直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的极坐标方程;(2)设和交点的交点为,求的面积.19.(12分)如图,在四棱锥中,侧棱底面,,,,,是棱中点.(1)已知点在棱上,且平面平面,试确定点的位置并说明理由;(2)设点是线段上的动点,当点在何处时,直线与平面所成角最大?并求最大角的正弦值.20.(12分)已知,分别是椭圆:的左,右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点.(1)求,的值:(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求△的面积.21.(12分)已知矩阵,,若矩阵,求矩阵的逆矩阵.22.(10分)在等比数列中,已知,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【详解】由的图象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C【点睛】本题考查了函数单调性和不等式的基础知识,属于中档题.2、B【解析】

列举出循环的每一步,可得出输出结果.【详解】,,不成立,,;不成立,,;不成立,,;成立,输出的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.3、A【解析】

根据[x]的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可.【详解】当时,,当时,,当时,,当时,,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围;(2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.4、B【解析】

由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得.【详解】解:由等差数列的性质可得,解得,,故选:B.【点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题.5、D【解析】

利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【详解】因为,由诱导公式可得,,即,因为,所以,由二倍角的正弦公式可得,,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.6、A【解析】

由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【详解】椭圆的离心率:,(c为半焦距;a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,,故选:A【点睛】本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.7、A【解析】

首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【详解】不超过的素数有,,,,,,,,共个,从这个素数中任选个,有种可能;其中选取的两个数,其和等于的有,,共种情况,故随机选出两个不同的数,其和等于的概率.故选:.【点睛】本题考查古典概型概率问题的求解,属于基础题.8、B【解析】

判断函数的奇偶性,可排除A、C,再判断函数在区间上函数值与的大小,即可得出答案.【详解】解:因为,所以,所以函数是奇函数,可排除A、C;又当,,可排除D;故选:B.【点睛】本题考查函数表达式判断函数图像,属于中档题.9、A【解析】

分析可得,显然在上恒成立,只需讨论时的情况即可,,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.【详解】由题意,若,显然不是恒大于零,故.,则在上恒成立;当时,等价于,因为,所以.设,由,显然在上单调递增,因为,所以等价于,即,则.设,则.令,解得,易得在上单调递增,在上单调递减,从而,故.故选:A.【点睛】本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.10、A【解析】

根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.11、A【解析】

利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.12、A【解析】

根据题意P到两个平面的距离相等,根据等体积法得到SΔPB'M【详解】二面角P-AM-B'与二面角P-AM-C的平面角相等,故P到两个平面的距离相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P为CB'中点.故选:A.【点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

分析出集合A为奇数构成的集合,即可求得交集.【详解】因为表示为奇数,故.故答案为:【点睛】此题考查求集合的交集,根据已知集合求解,属于简单题.14、①②④【解析】

由题意可知,若要存在使得成立,我们可考虑两函数是否存在公切点,若两函数在公切点对应的位置一个单增,另一个单减,则很容易判断,对①,③,④都可以采用此法判断,对②分析式子特点可知,,进而判断【详解】①时,令,则,单调递增,,即.令,则,单调递减,,即,因此,满足题意.②时,易知,满足题意.③注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为,易知,,因此不存在直线满足题意.④时,注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为.令,则,易知在上单调递增,在上单调递减,所以,即.令,则,易知在上单调递减,在上单调递增,所以,即.因此,满足题意.故答案为:①②④【点睛】本题考查新定义题型、利用导数研究函数图像,转化与化归思想,属于中档题15、【解析】

基本事件总数,三人都收到礼物包含的基本事件个数.由此能求出三人都收到礼物的概率.【详解】三个小朋友之间准备送礼物,约定每人只能送出一份礼物给另外两人中的一人(送给两个人的可能性相同),基本事件总数,三人都收到礼物包含的基本事件个数.则三人都收到礼物的概率.故答案为:.【点睛】本题考查古典概型概率的求法,考查运算求解能力,属于基础题.16、【解析】

求导,x=0代入求k,点斜式求切线方程即可【详解】则又故切线方程为y=x+1故答案为y=x+1【点睛】本题考查切线方程,求导法则及运算,考查直线方程,考查计算能力,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)16;(2)115.【解析】

(1)易得使得的情况只有“”,“”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“”共有种,“”共有种.再根据古典概型的方法可知,利用组合数的计算公式可得,当时根据题意有,共个;当时求得,再根据换元根据整除的方法求解满足的正整数对即可.【详解】解:(1)三个数乘积为有两种情况:“”,“”,其中“”共有:种,“”共有:种,利用分类计数原理得:为“﹣数列”中的任意三项,则使得的取法有:种.(2)与(1)同理,“”共有种,“”共有种,而在“﹣数列”中任取三项共有种,根据古典概型有:,再根据组合数的计算公式能得到:,时,应满足,,共个,时,应满足,视为常数,可解得,,根据可知,,,,根据可知,,(否则),下设,则由于为正整数知必为正整数,,,化简上式关系式可以知道:,均为偶数,设,则,由于中必存在偶数,只需中存在数为的倍数即可,,.检验:符合题意,共有个,综上所述:共有个数对符合题意.【点睛】本题主要考查了排列组合的基本方法,同时也考查了组合数的运算以及整数的分析方法等,需要根据题意18、(1);(2)【解析】

(1)先将曲线的参数方程化为普通方程,再将普通方程化为极坐标方程即可.(2)将和的极坐标方程联立,求得两个曲线交点的极坐标,即可由极坐标的含义求得的面积.【详解】(1)曲线的参数方程为(α为参数),消去参数的的直角坐标方程为.所以的极坐标方程为(2)解方程组,得到.所以,则或().当()时,,当()时,.所以和的交点极坐标为:,.所以.故的面积为.【点睛】本题考查了参数方程与普通方程的转化,直角坐标方程与极坐标的转化,利用极坐标求三角形面积,属于中档题.19、(1)为中点,理由见解析;(2)当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值.【解析】

(1)为中点,可利用中位线与平行四边形性质证明,,从而证明平面平面;(2)以A为原点,分别以,,所在直线为、、轴建立空间直角坐标系,利用向量法求出当点在线段靠近的三等分点时,直线与平面所成角最大,并可求出最大角的正弦值.【详解】(1)为中点,证明如下:分别为中点,又平面平面平面又,且四边形为平行四边形,同理,平面,又平面平面(2)以A为原点,分别以,,所在直线为、、轴建立空间直角坐标系则,设直线与平面所成角为,则取平面的法向量为则令,则所以当时,等号成立即当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值.【点睛】本题主要考查了平面与平面的平行,直线与平面所成角的求解,考查了学生的直观想象与运算求解能力.20、(1);(2).【解析】

(1)由已知根据抛物线和椭圆的定义和性质,可求出,;(2)设直线方程为,联立直线与圆的方程可以求出,再联立直线和椭圆的方程化简,由根与系数的关系得到结论,继而求出面积.【详解】(1)焦点为F(1,0),则F1(1,0),F2(1,0),,解得,=1,=1,(Ⅱ)由已知,可设直线方程为,,联立得,易知△>0,则==

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论