某地区某农产品收购量与_第1页
某地区某农产品收购量与_第2页
某地区某农产品收购量与_第3页
某地区某农产品收购量与_第4页
某地区某农产品收购量与_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

某地区某农产品收购量与年份YX196935.5819.6919557.965.33197031.0321.13195615.346.82197114.3332.34195713.558.17197213.8819.57195810.949.48197314.6616.3919596.398.03197419.3717.9619601.943.58197535.4718.3919610.061.17197635.4918.8319620.660.92197732.7721.1519636.041.63197832.219.8196415.417.73197938.534.86196515.39.46198053.7222.96196619.3213.97198151.317.45196735.7617.32198234.0416.05196835.0317.36198316.0317.38198421.7916.79第一步:描述统计量YX

Mean

22.35857

14.55500

Median

17.36500

16.85500

Maximum

53.72000

34.86000

Minimum

0.060000

0.920000

Std.Dev.

14.95748

8.646472

Skewness

0.324925

0.293930

Kurtosis

2.144772

2.808145

Jarque-Bera

1.346006

0.446120

Probability

0.510174

0.800067

Sum

626.0400

407.5400

SumSq.Dev.

6040.606

2018.560

Observations

28

28由表可知:y和x的最值,平均值,中位数,方差等数据。由经济理论知,农产品收购量受销售量影响,当销售量增加时,农产品收购量也会增加,它们之间有同步变动趋势,农产品收购量除受销售量的影响之外,还受到其他一些变量及随机因素的影响,将这些变量均归并到随机变量u中,根据X与Y的样本数据作散点图散点图由图可知,它们的变化趋势是线性的,由此建立农产品收购量与销售量之间的一元线性回归模型,通过Eviews一元线性回归模型参数DependentVariable:YMethod:LeastSquaresDate:06/10/12Time:16:31Sample:19551982Includedobservations:28VariableCoefficientStd.Errort-StatisticProb.

C4.8570824.1098471.1818160.2480X1.2024380.2439014.9300350.0000R-squared0.483155

Meandependentvar22.35857AdjustedR-squared0.463277

S.D.dependentvar14.95748S.E.ofregression10.95806

Akaikeinfocriterion7.694777Sumsquaredresid3122.055

Schwarzcriterion7.789934Loglikelihood-105.7269

Hannan-Quinncriter.7.723867F-statistic24.30524

Durbin-Watsonstat0.964078Prob(F-statistic)0.000040一、即样本回归方程为在显著水平为0.05的条件下,查自由度为28-2=26的t分布,得临界值2.06,两参数的t值分别为1.181816,4.930035,故回归系数均显著不为零,回归模型中应包含常数项,X对Y有显著影响。二、通过 White检验该模型中随机误差项是否存在异方差HeteroskedasticityTest:WhiteF-statistic4.502771

Prob.F(2,25)0.0214Obs*R-squared7.415120

Prob.Chi-Square(2)0.0245ScaledexplainedSS10.42735

Prob.Chi-Square(2)0.0054TestEquation:DependentVariable:RESID^2Method:LeastSquaresDate:06/10/12Time:16:39Sample:19551982Includedobservations:28VariableCoefficientStd.Errort-StatisticProb.

C8.50754993.962200.0905420.9286X-0.06378212.23389-0.0052140.9959X^20.3660030.3650621.0025780.3257R-squared0.264826

Meandependentvar111.5020AdjustedR-squared0.206012

S.D.dependentvar205.0724S.E.ofregression182.7318

Akaikeinfocriterion13.35487Sumsquaredresid834773.1

Schwarzcriterion13.49761Loglikelihood-183.9682

Hannan-Quinncriter.13.39851F-statistic4.502771

Durbin-Watsonstat1.736188Prob(F-statistic)0.021374由检验结果可知,Obs*R-squared值为,7.415120明显大于在显著水平0.05,自由度为2的5.991,故该模型存在异方差。用加权最小二乘法剔除异方差,权重为w=(8.507549-0063782*x+0.366003*x^2)^(-0.5)所得结果为DependentVariable:YMethod:LeastSquaresDate:06/10/12Time:16:47Sample:19551982Includedobservations:28Weightingseries:WVariableCoefficientStd.Errort-StatisticProb.

C-0.1478591.484471-0.0996040.9214X1.5922710.1690469.4191350.0000WeightedStatisticsR-squared0.773361

Meandependentvar15.62696AdjustedR-squared0.764645

S.D.dependentvar7.817281S.E.ofregression6.546334

Akaikeinfocriterion6.664437Sumsquaredresid1114.217

Schwarzcriterion6.759594Loglikelihood-91.30211

Hannan-Quinncriter.6.693527F-statistic88.72011

Durbin-Watsonstat0.888837Prob(F-statistic)0.000000UnweightedStatisticsR-squared0.430297

Meandependentvar22.35857AdjustedR-squared0.408386

S.D.dependentvar14.95748S.E.ofregression11.50476

Sumsquaredresid3441.349Durbin-Watsonstat1.148584修正后再次进行怀特检验HeteroskedasticityTest:WhiteF-statistic0.653557

Prob.F(2,25)0.5289Obs*R-squared1.391228

Prob.Chi-Square(2)0.4988ScaledexplainedSS1.066437

Prob.Chi-Square(2)0.5867TestEquation:DependentVariable:WGT_RESID^2Method:LeastSquaresDate:06/10/12Time:16:50Sample:19551982Includedobservations:28CollineartestregressorsdroppedfromspecificationVariableCoefficientStd.Errort-StatisticProb.

C2461.9892805.3630.8776010.3885WGT^2-412.8241474.0004-0.8709360.3921X^2*WGT^2-17.6234720.46509-0.8611480.3973R-squared0.049687

Meandependentvar39.79345AdjustedR-squared-0.026338

S.D.dependentvar54.03521S.E.ofregression54.74218

Akaikeinfocriterion10.94410Sumsquaredresid74917.66

Schwarzcriterion11.08684Loglikelihood-150.2174

Hannan-Quinncriter.10.98774F-statistic0.653557

Durbin-Watsonstat1.624385Prob(F-statistic)0.528853结果中Obs*R-squared比原来小,故在一定程度上剔除了异方差,那么一元线性回归方程为三、检验误差项是否存在自相关,由DW 值为0.964078,小于显著水平为0.05,样本容量为28下的值1.33,所以存在自相关。检验是否存在高阶自相关,最后结果如下:用广义差分法消除自相关:Breusch-GodfreySerialCorrelationLMTest:F-statistic9.222670Obs*R-squared7.545722

Prob.F(1,25)0.0055

Prob.Chi-Square(1)0.0060TestEquation:DependentVariable:RESIDMethod:LeastSquaresDate:06/10/12Time:17:09Sample:19551982Includedobservations:28Presamplemissingvaluelaggedresidualssettozero.VariableCoefficientStd.Errort-StatisticProb.

C2.0850973.647450X-0.1302000.216870RESID(-1)0.5383710.1772770.5716590.5727-0.6003590.55373.0368850.0055R-squared0.269490AdjustedR-squared0.211049S.E.ofregression9.551319

Meandependentvar1.46E-15Sumsquaredresid2280.692

S.D.dependentvar10.75322Loglikelihood-101.3307

Akaikeinfocriterion7.452193F-statistic4.611335

Schwarzcriterion7.594929Prob(F-statistic)0.019739

Hannan-Quinncriter.7.495829

Durbin-Watsonstat1.757452DependentVariable:YYMethod:LeastSquaresDate:06/10/12Time:17:22Sample(adjusted):19561982Includedobservations:27afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.

C0.5118980.3673101.3936420.1757XX0.0496680.0214442.3162190.0290R-squared0.176680

Meandependentvar1.251790AdjustedR-squared0.143747

S.D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论