版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
electronics
Article
End-to-EndDeepNeuralNetworkArchitecturesforSpeedandSteeringWheelAnglePredictioninAutonomousDriving
PedroJ.Navarro1,*,LeanneMiller1,FranciscaRosique1,CarlosFernindez-Isla1andAlbertoGila-Navarro2
checkfor
updates
Citation:Navarro,P.J.;Miller,L.;Rosique,F.;Fernández-Isla,C.;
Gila-Navarro,A.End-to-EndDeepNeuralNetworkArchitecturesfor
SpeedandSteeringWheelAngle
PredictioninAutonomousDriving.
Electronics2021,10,1266.
https://
/10.3390/electronics10111266
AcademicEditors:DongSeogHan,KalyanaC.VeluvoluandTakeoFujii
Received:13April2021
Accepted:18May2021
Published:25May2021
Publisher’sNote:MDPIstaysneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffil-iations.
Copyright:©2021bytheauthors.LicenseeMDPI,Basel,Switzerland.ThisarticleisanopenaccessarticledistributedunderthetermsandconditionsoftheCreativeCommons
Attribution(CCBY)license(https://
/licenses/by/
4.0/).
1
2
*
Divisi6ndeSistemaseIngenier½aElectr6nica(DSIE),CampusMuralladelMar,s/n,UniversidadPolitécnicadeCartagena,30202Cartagena,Spain;ler@upct.es(L.M.);paqui.rosique@upct.es(F.R.);
carlos.fernandez@upct.es(C.F.-I.)
GenéticaMolecular,InstitutodeBiotecnolog½aVegetal,EdificioI+D+I,PlazadelHospitals/n,UniversidadPolitécnicadeCartagena,30202Cartagena,Spain;alberto.gilan@um.es
Correspondence:pedroj.navarro@upct.es;Tel.:+34-968-32-6546
Abstract:Thecomplexdecision-makingsystemsusedforautonomousvehiclesoradvanceddriver-assistancesystems(ADAS)arebeingreplacedbyend-to-end(e2e)architecturesbasedondeep-neural-networks(DNN).DNNscanlearncomplexdrivingactionsfromdatasetscontainingthousandsofimagesanddataobtainedfromthevehicleperceptionsystem.Thisworkpresentstheclassification,designandimplementationofsixe2earchitecturescapableofgeneratingthedrivingactionsofspeedandsteeringwheelangledirectlyonthevehiclecontrolelements.Theworkdetailsthedesignstagesandoptimizationprocessoftheconvolutionalnetworkstodevelopsixe2earchitectures.Inthemetricanalysisthearchitectureshavebeentestedwithdifferentdatasourcesfromthevehicle,suchasimages,XYZaccelerationsandXYZangularspeeds.Thebestresultswereobtainedwithamixeddatae2earchitecturethatusedfrontimagesfromthevehicleandangularspeedstopredictthespeedandsteeringwheelanglewithameanerrorof1.06%.Anexhaustiveoptimizationprocessoftheconvolutionalblockshasdemonstratedthatitispossibletodesignlightweighte2earchitectureswithhighperformancemoresuitableforthefinalimplementationinautonomousdriving.
Keywords:autonomousdriving;end-to-endarchitecture;speedandsteeringwheelangleprediction;DNNforregression
1.Introduction
Autonomousdrivingtechnologyhasadvancedgreatlyinrecentyears,butitisstillanongoingchallenge.Traditionally,intelligentdecisionmakingsystemsonboardautonomousvehicleshavebeencharacterizedbytheirenormouscomplexity[
1
]andarecomposedofmultiplesubsystems,includingaperceptionsystem,globalandlocalnavigationsystems,acontrolsystem,asurroundingsinterpretationsystem,etc.,[
2
].Thesesubsystemsarecombinedaimingtocoverthecomplicateddecisionsandtaskswhichthevehiclemustperformwhilstdriving.Toobtaintheobjectivesofthevehicle,thesesubsystemsuseawiderangeoftechniqueswhichinclude:cognitivesystems[
3
],agentsystems[
4
],fuzzysystems[
5
],neuralnetworks[
6
],evolutionaryalgorithms[
7
]orrule-basedmethods[
8]
.
Deeplearningtechniquesarebecomingincreasinglypopularandarenowavaluabletoolinawiderangeofindustries,includingtheautomotiveindustry,duetotheirpowerfulimagefeatureextraction.Thesetechniqueshaveallowedtheso-calledend-to-end(e2e)drivingapproachtoappear,simplifyingthetraditionalsubsystemsgreatlyandreducingthetasksofmodelingandcontrolofthevehicle[
9
](Figure
1).TheappearanceofDNNs
meanthatdecision-makingsystemsonboardautonomousvehiclescanreplacemanyofthesubsystemsmentionedpreviouslywithneuralblocks[
10
].Theseneuralblocks,properlyinterconnectedandtrainedwiththecorrectdataarecapableofobtainingperformancesgreaterthan95%forthepredictionofvehiclecontrolvariables[
11]
.Anadvantageofthesemodelsisthattheygenerallyrequirefeweronboardsensorsasthemainsourceof
Electronics2021,10,1266.
/10.3390/electronics10111266
/journal/electronics
Electronics2021,10,12662of
21
informationfedtotheDNNsusuallyconsistsofRGBimagesandkinematicdatafromaninertialmeasurementunit(IMU)[
12
].Thismakesend-to-enddrivingsystemsmoreeasilyaccessiblethanthetraditionalperceptionsubsystemswithsensorssuchasLIDARwhichareverycostly.
Figure1.Traditionaldrivingsystemscomparedtoend-to-enddrivingsystem.
Deeplearningmethodsforautonomousdrivinghavegainedpopularitywithadvance-mentsinhardware,suchasGPUs,andmorereadilyavailabledatasets,bothforend-to-enddrivingtechniques[
13
]andtheuseofdeeplearninginindividualsubsystems[
14
].Therehavebeenavarietyofdifferentapproachesforthedevelopmentofdrivingapplicationsusingendtoendlearningtechniques.Inonestudy,a98%accuracywasobtainedusingconvolutionalneuralnetworks(CNN)togeneratesteeringanglesfromimagesgeneratedbyafrontviewcamera[
15
].Inasimilarwork,asequenceofimagesfromapublicdatasetwasusedasinputtotheCNN,topredictwhetherthevehiclewasaccelerating,deceleratingormaintainingspeedaswellascalculatingthesteeringangle[
16]
.
AninterestingapproachdesignedaCNNtodevelopahuman-likeautonomousdrivingsystemwhichaimstoimitatehumanbehaviormeaningthevehiclecanbetteradapttorealroadconditions[
13
].Theauthorsused3DLIDARdataasinputtothemodelandgeneratedsteeringandspeedcommands,andinadrivingsimulationmanagedtodecreaseaccidentswiththeautonomoussystemten-foldcomparedwiththehumandriver.AdrivingsimulatorwasalsousedtotestaCNN-basedclosedloopfeedbacktocontrolthesteeringangleofthevehicle[
17
].TheauthorsdesignedtheirownCNN,DAVE-2SKY,usingtheCaffedeeplearningframeworkandtestedthesysteminalane-keepingsimulation.Theresultswerepromising,althoughproblemsoccurredifthedistancetothevehicleinfrontbecamelessthan9m.
Variouslongshort-termmemory(LSTM)modelshavealsobeenstudied.Aconvolu-tionalLSTMmodelwithbackpropagationwastrainedtoobtainthesteeringanglefromvideoframesusingtheUdacitydataset[
18]
.AnFCN-LSTMarchitecturewasusedtopredictdrivingactionsandmotionfromimagesobtainingalmost85%accuracy.Acon-volutionalLSTMmodelwasalsousedtopredictsteeringanglesfromastreamofimagesfromafrontfacingcamera[
19
],improvingontheresultsfrompreviousworks[
20]
.
Anotherapproachconsistsinaddingmoresensors.Inoneworkadatasetwasobtainedusingsurroundviewcamerasinadditiontothetypicalfrontviewcamera[
21
].ThedataobtainedbythecameraswasusedtopredictthespeedandsteeringangleusingexistingpretrainedCNNmodels.Theuseofsurroundviewcamerasimprovedtheresultsobtainedatlowspeeds(<20km/h),butatgreaterspeedstheimprovementwaslesssignificant.
Inthiswork,wepresentadetailedstudyimplementingsixend-to-endDNNarchitec-turesforthepredictionofthevehiclespeedandthesteeringwheelangle.Thearchitectureshavebeentrainedandtestedusing78,011imagesfromrealdrivingscenarios,whichwerecapturedbytheCloudIncubatorCar(CIC)autonomousvehicle[
2]
.
Electronics2021,10,12663of
21
2.MaterialsandMethods
DNNend-to-endarchitecturesrequirelargevolumesofdataforthemodelstocon-vergecorrectly.ThedataneededtocreateDNNmodelsforautonomousdrivingorADAScanbeobtainedfromthreedifferenttypesofsources:
1.Adhoctests.Toperformthistypeoftesting,largeresourcesarerequired,intheformofoneormorevehicles,expensiveperceptionsystems(e.g.,LIDAR)andpersonnelcapableoftheinstallation,integrationandcommissioningofsophisticatedsensorsanddatarecordingsystems.Inaddition,thedatamustbepost-processed,andthesynchronizationofthedifferentvehicleinformationsourcesisrequired.
2.Publicdatasets.Therearedatasetsdevelopedbybusinessesanduniversitiesforau-tonomousdrivingwheredataobtainedfromtheperceptionsystemsoftheirvehiclescanbeaccessed[
10
].Someofthesepresentdiversescenarioswithdifferentlightandmeteorologicalconditions[
22
].Table
1
showssomerecentpublicdatasetsincludingnumberofsamples,typesofimagesavailableandtypesofvehiclecontrolactionsstored.
3.Simulators.Giventhecomplexityofconductingrealtests,autonomousdrivingsimulatorshavebecomeoneofthemostwidelyusedalternatives.Thesimulationindustryrangesfromsimulationplatforms,vehicledynamicssimulationandsensorsimulationtoscenariosimulationandevenscenariolibraries.Atpresent,therearemanyoptions,includinggenericsolutionswhichmakeuseofgamesandphysicenginesforsimulation[
23
]androboticssimulators[
16]
.Recentlyonthemarketcompaniesthatdevelopsimulationproductsspecificallydesignedtosatisfytheneedsofautonomousdrivinghaveappeared.SomeofthesecompaniesincludeCognata,CARLA,METAMOTO,etc.
Table1.Publicdatasetsforautonomousdriving.
Ref./Year
Samples
ImageType
LIDAR
RADAR
IMU
ControlActions
UPCT2019
78,000
RGB,Depth
Yes
No
Yes
Steeringwheel,Speed
LyftL5[
24
]/2019
323,000
RGB
Yes
No
Yes
-
nuScenes[
25
]/2019
1,400,000
RGB
Yes
Yes
Yes
-
Pandaset[
22
]/2019
48,000
RGB
Yes
No
Yes
-
Waymo[
23
]/2019
1,000,000
RGB
Yes
No
Yes
-
Udacity[
16
]/2016
34,000
RGB
Yes
No
Yes
Steeringwheel
GAC[
26
]/2019
3,240,000
RGB
No
No
No
Steeringwheel,Speed
Inthisworkadhocdatahasbeenchosen.Toobtainthedata,acustomdatasetwascreated,astheresultofadhocdrivingtestsperformedusingtheCloudIncubatorCarautonomousvehicle(CICar)[
2
](seeFigure
2),anautonomousvehicleprototypebased
ontheadaptionofthecommercialelectricvehicle,RenaultTwizy.Thevehiclehasbeenconvenientlymodifiedandhousesacompleteperceptionsystemconsistingofa2DLIDAR,3DHDLIDAR,ToFcameras,aswellasalocalizationsystemwhichcontainsareal-timekineticunit(RTK)andinertialmeasurementunit(IMU,seeFigure
2
c)andautomationofthedrivingelementsofthevehicle(accelerator,brake,steeringandgearbox).Allofthisiscomplementedwiththebiometricdataofthedriverstakenduringthedrivingtests.
2.1.DrivingTests
Agroupof30driversofdifferentageandgenderwereselectedtoperformthedrivingtests,ofwhichfivewerediscardedduetosynchronizationproblems,recordingfailureorincompletedata.ThedrivingtestswerecarriedoutinCartagenaintheRegionofMurcia,Spain,followingapreviouslyselectedroutewithrealtraffic.
Thisrouteprovidesasignificantsetoftypicalurbandrivingscenarios:(a)junctionswithrightofwayandchangesofpriority;(b)incorporation,internalcirculationandexitingofaroundabout;(c)drivingalongaroadwithandparkingareas;(d)mergingtraffic
Electronics2021,10,12664of
21
situations.Inordertocontemplateagreatervarietyofenvironmentalconditions,eachdrivercompletedtheroutetwiceatdifferenttimesofday(morning,afternoonorevening).InFigure
3
asampleofsomeofthedatasetimagesisshown,wheresomeofthedifferentdrivingconditionscapturedduringthetestscanbeobserved.
Figure2.(a)CloudIncubatorCarautonomousvehicle(CiCar).(b)CiCarondataacquisitionmission.(c)VehiclemodelandIMUsensormeasurementdetails.
Figure3.Imagesfromdataset.(a)pedestriancrossing;(b)saturationoftheilluminationonroundabout;(c)carbraking;(d)complexshadowsontheroad.
2.2.VehicleConfiguration
Asmentionedpreviously,thedatawascollectedusingtheCICarprototypevehicleinmanualmode,drivenbyahumandriver.InTable
2
thevariablesanddataacquiredduringthedrivingtestsareshown,aswellastheinformationaboutthedevicesandsystemsusedtoobtainthedata.
Eachsensorworkswithitsownsamplerate,andinmostcasesthisisdifferentbetweendevices.Toachievethecorrectdatasynchronizationandreconstructthetemporalsequencewithprecision,stampingtimeshavebeengeneratedforeachsensorandthesehavebeensynchronizedatthestartandendoftherecording.Therefore,allthedevicesarecontrolledbythecontrolunitonboardthevehicle,providingaperfecttemporalandspatialsynchronizationofthedataobtainedbythedifferentsensors.Thedatafromeachtestisdownloadedandstoredinthecentralserveroncethedrivehasfinished.
Electronics2021,10,12665of
21
Table2.CICar.Sensordata.
Variable/Unit
Device/System
Frequency
Vehicleposition/(LLA)1
4Hz
acceleration/(m/s2)
GNSS-IMU
20Hz
angularspeed/(。/s)
20Hz
Steeringwheelangle/(。)Distance/(m)
Speed/(m/s)
compactRioControlunit
50Hz
50Hz
50Hz
Frontalimage/
RGBDCamera
25fps
Driverattentionimage
RGBCamera
25fps
SurroundingsCloudPoints
LIDARs,ToFcameras
10Hz
1LLA—latitude,longitude,andaltitude.
2.3.DeepLearningEnd-to-EndArchitecturesClassification
End-to-end(e2e)systemsbasedonDNNarchitecturesappliedtoautonomousdrivingcanmodelthecomplexrelationshipsextractedfromtheinformationobtainedfromthevehicleperceptionsystem.Thisisachievedusingdifferenttypesofneuralblocksgroupedintolayers(e.g.,convolutionallayers,fully-connectedlayers,recurrentlayers,etc.),withtheaimofgeneratingdirectcontrolactionsonthesteeringwheel,theacceleratorandthebrake.Theseactionsonthevehiclecontrolelementscanbecategorical,e.g.,increaseordecreasethespeed,ortheycangenerateasetpointonthecontroller,e.g.,turn13.6degreesorreach45km/h.
Themachinelearningalgorithmsthatareusedtomodeldrivingactionsbelongtothesetknownassupervisedlearning.Thesealgorithmsacquireknowledgefromadatasetofsamplespreviouslyacquiredduringdrivingtestswithapreviouslyconditionedvehicle[
2]
orfromdrivingsimulators[
27
].Thesedatasetsincludedatafromtheperceptionsystem,suchas:images(RGBoIR),LIDAR,RADAR,IMU,aswellastheactionsperformedbythedriveronthevehiclecontrolelements,suchasthesteeringwheel,theacceleratorandthebrake.
Thegenerationofdiscretevariablesbyamachinelearningalgorithmisknownasregressionandisawidelystudiedproblem[
28]
.RegressionmodelsforDNNusethegradientdescentfunctiontosearchfortheoptimalweightsthatminimizethelossfunction.Thelossfunctionsusedforthesemodelsdifferfromthoseusedintheclassificationmodels,withthemostusedbeingthemeanabsoluteerror,meansquareabsoluteerrorormeanabsolutepercentageerror,amongothers.
Thisworkproposesaclassificationofe2earchitecturesbasedonthetypeofdatareceivedbytheDNNfromthevehicleperceptionsystem.Thisisdonebyconsideringtheimageprovidedbythevisualperceptionsystemofthevehicleasthemaindatasourceforthee2earchitecture.Basedonthetypeofnetworkinput,thearchitectureshavebeenclassifiedintothreetypes:(1)singledatae2earchitecture(SiD-e2e),(2)mixeddatae2earchitecture(MiD-e2e)andsequentialdatae2earchitecture(SeD-e2e).
2.3.1.SiD-e2eArchitecture
Thistypeofarchitectureusesasingledatasourcefortheinputlayertogeneratethesetpointsdirectlyforthecontrolelementsofthevehicle.TheSiDarchitecturesusethevisualinformationprovidedbyoneormorecameraslocatedonthefrontandperipheryofthevehicletocomposeasingleimageofthevehiclesfieldofviewofthevehicleasavisualinputtothenetwork[
15,
29,
30
].BeforebeingprocessedbytheDNN,theimagesarereducedinsizeandnormalized.Subsequently,theimagesgothroughconvolutionallayersofdifferentkernelsize(kk)anddepth(d)whichallowtheimagefeaturesthatminimizethecostfunctiontobeextractedautomaticallyinsuccessivelayers.Aftertheconvolutionallayers,theresultingvectoristransformedintoonedimension(Flayer)andconnectedtoasetoffully-connectedlayers(FC)whichhavethedecision-makingcapacity.Lastly,theFClayersendinthenumberofneuronsequaltothenumberofvariablestobe
Electronics2021,10,12666of
21
predicted[
15,
28
].Figure
4
showsanexampleoftheSiDarchitecturewherethenormalizedimagefeedsagroupofconvolutionallayerswithdifferentkernelsizes,followedbyasetoffully-connectedlayersandafinaloutputlayer.
Figure4.Singledatae2earchitecture(SiD).
Thenumberofconvolutionallayers,theirsize,paddingandstride,aswellasthenumberofneuronsintheFClayersareadjustedempirically.Theseparametersarede-pendentonthetrainingdatasetandthesizeoftheinputimages.Thereareworkswherethearchitectureshavebeendesignedusingbanksofconvolutionalfiltersofincreasingsize[
30
]andthereareotherswherethedesignistheopposite[
31,
32
].Generallyspeaking,theconvolutionallayerswithasmallkernelsizeextractreducedspatialcharacteristics,suchastrafficsigns,trafficlightsorlaneseparationlines,whilethosewithagreaterkernelsizedetectlargerelementsintheimage,suchasvehicles,pedestriansortheroad[
31]
.
2.3.2.MiD-e2eArchitecture
Mixeddataarchitecturesallowdifferentdatasourcesfromthevehicle,suchasRADAR,longitudinalandlateralaccelerations,angularvelocities,mapsorGPStobemergedtogetherwiththevisualinformationfromthevehicle’scameras.TheinclusionofmoreinformationsourcesintheDNNaimsto:(1)improvetheperformanceofthemodel,(2)improvethepredictionofspecificcasesorabnormaldriving;and(3)increasethetolerancetofailuresproducedbythedatasources[
21,
29,
33
].AsshowninFigure
5,thistypeof
architecturecombinestheresultsoftheSiD-e2e,suchasthoseshowninthepreviousSection
2.3.1
,withasetofFClayerswhichallowsthemappingofthecharacteristicsfromothervehicledatasourcesonalayerthatconcatenatesalltheinformation.
Figure
5
showsafirstinputbranchwheretherelevantinformationisextractedfromtheimagewithasecondbranchthatextractsextrainformation,forexamplefromtheIMUorGPS.Theconcatenationlayerreceivesaspecifiednumberofinputsfrombothbranchesofthemodel.Thenumberofconnectionsfromeachbranchisusuallydeterminedusingempiricaltechniques.MiDarchitectureishabituallyusedindatafusionintheperceptionsystemsofautonomousvehiclesorADAS.
Electronics2021,10,12667of
21
Figure5.Mixeddatae2earchitecture(MiD).
2.3.3.SeD-e2eArchitecture
Drivingisataskwherethefutureactionsonthevehicle’scontrolelementsdependgreatlyonthepreviousactions,thereforethepredictionofthecontrolactionscanbemodeledasatimeseriesanalysis[
16,
26,
34
].Sequentialdatabasedarchitecturesaimtomodelthetemporalrelationshipsofthedatausingfeedbackneuralunits(seeFigure
6
),thesetypesofneuralnetworksareknownasrecurrentneuralnetworks(RNN)[
34
].BasicRNNscanlearntheshort-termdependenciesofthedatabuttheyhaveproblemswithcapturingthelong-termdependenciesduetovanishinggradientproblems[
35
].Tosolvethevanishinggradientproblems,moresophisticatedRNNarchitectureshaveappearedwhichuseactivationfunctionsbasedongatingunits.Thegatingunithasthecapacityofconditionallydecidingwhatinformationisremembered,forgottenorforpassingthroughtheunit.Thelongshort-termmemory(LSTM)[
36
]andGRU(gatedrecurrentunit)aretwoexamplesofthesekindsofRNNarchitectures[
37]
.
Figure6.Sequentialdatae2earchitecture(SeD).
RNN[
15
],LSTM(longshort-termmemory)[
16
]andGRU(gatedrecurrentunit)arethemostusedformodelingthetemporalrelationshipsinthefieldofe2earchitectures.TheuseofRNNine2earchitecturesrequiresthenetworkinputdatatobetransformedintotemporalsequencesintheformoftimesteps(ts).ThepartitioningoftheNinputsamples
Electronics2021,10,12668of
21
ofthenetworkwillgenerate(N-ts)temporalsequencesthatwillcorrespondtoanoutputvectorfromthenetworkaccordingtoEquation(1):
S.input=f[I1,..,Its],[I2,..,Its+1]...,[In1ts,..,IN-1]g,
output=fots+1,ots+2,............,oNg
(1)
Figure
7
showstheprocedurestogenerateN-tssequencesofsizetsfromadatasetcomposedofNimagesandNpairsofoutputvalues(v:speed,θ:steeringwheelangle).
Figure7.Compositionofsequentialimagesandoutputvaluesdata.
TocreateamodelfromtheSeD-e2earchitectures,thiswillbetrainedwithtemporalsequencesofsizets(I1toIts)andthenextoutputvectortopredict(vts+1,θts+1)asitisshownintheFigure
7.
2.4.ParemetersofDeepNeuralNetworkArchitectures
ThenumberofparameterswhichcomeintoplayduringthedesignprocessofaDNNisenormousandwecanseparatethemintothreetypes:
(1)Networkinputparameters.Theseparametersrefertothewaythenetworkinputvaluesarepresented.Fordataintheformofimages,theshapeparametersinclude:.Normalization.NormalizationmustbeperformedonthedatabeforetrainingtheDNN.Anadequatenormalizationcanimprovetheconvergenceandperformance
ofthenetwork.Equations(2)and(3)showthemostcommontechniques.
Scaled(0,1)=(xi-min)/(max-min)(
2)
Standarized(m=0,σ=1)=(xi-m)/(σ)(3)whereminandmax,arethemaximumandminimumvaluespresentinthedatasetX={x1,...,xN},withuandσbeingtheaverageandstandarddeviationofthedataset,respectively.Thereareothernormalizationtechniques,forexample,themeancanbesubstitutedforthemodeinEquation(3),forcasesinwhichthedatadistributiondoesnotalignbelowthemean.
.Resizing.Asageneralruleandespeciallyine2earchitecturesforautonomousdriving,theimagesizeisreducedbeforebeingprocessedbythenetwork.Themainreasonforthisistodecreasethenetworkprocessingtimeandtheresourcesinvolvedintheprediction.
.Colorspacetransformations.Itiscommontotransformtheinputimagetoacolorspaceotherthantheonesuppliedbythecameratoimproveperformance,forexampleHSI,LAB,etc.,[
10]
.
.Preprocessing.Whenthedataiscapturedfromdifferentsourcesordataset,thesetendtohavedisparatefeaturesfromthedeviseitselforfromthelightingof
Electronics2021,10,12669of
21
thescenewheretheimageswerecaptured,thereforehistogramequalizationorimageenhancementalgorithmsareusuallyappliedtonormalizetheappearanceoftheentiredataset.
.Dataaugmentation.Thistechniqueconsistsinincreasingthesizeoftheoriginaldatasetinordertoachievehigherlevelsofgeneralizationandtoimprovetheperformanceofthenetwork[
38]
.
(2)Architectureconfigurationparameters.Theseparametersconstitutethecomposition
ofonearchitectureoranother,andtheseinclude:
.Typeoflayer.Thearchitecturescanstackdifferentsetsoflayersineachbranch:FC,Convolutional,RNN,Concatenated,etc.
.Layersettings.Eachlayerhasspecificconfigurations,forexample,convolutionallayerscanbeconfiguredwithdifferenttypesoffilters,33,55,...,kk,theirdepthornumberoflayers.
.Layerdistribution.Thearchitecturescanconsistofasinglebranch,canbebranchedattheinput,orattheoutputorboth.
(3)Hyperparameters.Theseparametersarecharacteristicofthelearningprocessimplicit
inDNN,andamongthemare:
.Batchsize.Numberofsamplesthatwillbepassedthroughthenetworkbeforeupdatingtheweights.
.NumberofEpochs.Numberoftimesthelearningalgorithmwillworkwiththetrainingdataset.
.OptimizationAlgorithm.Themostwidelyusedisthegradientdescentalgorithm.However,variationshavebeendeveloped,suchasAdaGradwhichadjuststhelearningrate.AnothervariantisAdam,withadaptivemomentum.
.Learningrate.Theoptimizationalgorithmallowshowmuchtheweightsareupdatedattheendofeachbatchtobecontrolled.
.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备交付通知函
- 反洗工作汇报主题
- 低压电器知识分享
- 2025光盘复制加工合同书
- 2025软件开发项目合同(详细范本)
- 2025西瓜产销合同模板
- 2025蒸汽管道委托施工合同
- 农业产品行业销售工作总结
- 【七年级下册地理中图版】4.2.1 我国土地资源的特点 同步练习
- 高校教研团队发展战略
- 五年级数学应用题100道
- 政治表现及具体事例三条经典优秀范文三篇
- 高考诗歌鉴赏专题复习:题画抒怀诗、干谒言志诗
- 2023年辽宁省交通高等专科学校高职单招(英语)试题库含答案解析
- GB/T 304.3-2002关节轴承配合
- 漆画漆艺 第三章
- CB/T 615-1995船底吸入格栅
- 光伏逆变器一课件
- 货物供应、运输、包装说明方案
- (完整版)英语高频词汇800词
- 《基础马来语》课程标准(高职)
评论
0/150
提交评论