版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
electronics
Article
End-to-EndDeepNeuralNetworkArchitecturesforSpeedandSteeringWheelAnglePredictioninAutonomousDriving
PedroJ.Navarro1,*,LeanneMiller1,FranciscaRosique1,CarlosFernindez-Isla1andAlbertoGila-Navarro2
checkfor
updates
Citation:Navarro,P.J.;Miller,L.;Rosique,F.;Fernández-Isla,C.;
Gila-Navarro,A.End-to-EndDeepNeuralNetworkArchitecturesfor
SpeedandSteeringWheelAngle
PredictioninAutonomousDriving.
Electronics2021,10,1266.
https://
/10.3390/electronics10111266
AcademicEditors:DongSeogHan,KalyanaC.VeluvoluandTakeoFujii
Received:13April2021
Accepted:18May2021
Published:25May2021
Publisher’sNote:MDPIstaysneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffil-iations.
Copyright:©2021bytheauthors.LicenseeMDPI,Basel,Switzerland.ThisarticleisanopenaccessarticledistributedunderthetermsandconditionsoftheCreativeCommons
Attribution(CCBY)license(https://
/licenses/by/
4.0/).
1
2
*
Divisi6ndeSistemaseIngenier½aElectr6nica(DSIE),CampusMuralladelMar,s/n,UniversidadPolitécnicadeCartagena,30202Cartagena,Spain;ler@upct.es(L.M.);paqui.rosique@upct.es(F.R.);
carlos.fernandez@upct.es(C.F.-I.)
GenéticaMolecular,InstitutodeBiotecnolog½aVegetal,EdificioI+D+I,PlazadelHospitals/n,UniversidadPolitécnicadeCartagena,30202Cartagena,Spain;alberto.gilan@um.es
Correspondence:pedroj.navarro@upct.es;Tel.:+34-968-32-6546
Abstract:Thecomplexdecision-makingsystemsusedforautonomousvehiclesoradvanceddriver-assistancesystems(ADAS)arebeingreplacedbyend-to-end(e2e)architecturesbasedondeep-neural-networks(DNN).DNNscanlearncomplexdrivingactionsfromdatasetscontainingthousandsofimagesanddataobtainedfromthevehicleperceptionsystem.Thisworkpresentstheclassification,designandimplementationofsixe2earchitecturescapableofgeneratingthedrivingactionsofspeedandsteeringwheelangledirectlyonthevehiclecontrolelements.Theworkdetailsthedesignstagesandoptimizationprocessoftheconvolutionalnetworkstodevelopsixe2earchitectures.Inthemetricanalysisthearchitectureshavebeentestedwithdifferentdatasourcesfromthevehicle,suchasimages,XYZaccelerationsandXYZangularspeeds.Thebestresultswereobtainedwithamixeddatae2earchitecturethatusedfrontimagesfromthevehicleandangularspeedstopredictthespeedandsteeringwheelanglewithameanerrorof1.06%.Anexhaustiveoptimizationprocessoftheconvolutionalblockshasdemonstratedthatitispossibletodesignlightweighte2earchitectureswithhighperformancemoresuitableforthefinalimplementationinautonomousdriving.
Keywords:autonomousdriving;end-to-endarchitecture;speedandsteeringwheelangleprediction;DNNforregression
1.Introduction
Autonomousdrivingtechnologyhasadvancedgreatlyinrecentyears,butitisstillanongoingchallenge.Traditionally,intelligentdecisionmakingsystemsonboardautonomousvehicleshavebeencharacterizedbytheirenormouscomplexity[
1
]andarecomposedofmultiplesubsystems,includingaperceptionsystem,globalandlocalnavigationsystems,acontrolsystem,asurroundingsinterpretationsystem,etc.,[
2
].Thesesubsystemsarecombinedaimingtocoverthecomplicateddecisionsandtaskswhichthevehiclemustperformwhilstdriving.Toobtaintheobjectivesofthevehicle,thesesubsystemsuseawiderangeoftechniqueswhichinclude:cognitivesystems[
3
],agentsystems[
4
],fuzzysystems[
5
],neuralnetworks[
6
],evolutionaryalgorithms[
7
]orrule-basedmethods[
8]
.
Deeplearningtechniquesarebecomingincreasinglypopularandarenowavaluabletoolinawiderangeofindustries,includingtheautomotiveindustry,duetotheirpowerfulimagefeatureextraction.Thesetechniqueshaveallowedtheso-calledend-to-end(e2e)drivingapproachtoappear,simplifyingthetraditionalsubsystemsgreatlyandreducingthetasksofmodelingandcontrolofthevehicle[
9
](Figure
1).TheappearanceofDNNs
meanthatdecision-makingsystemsonboardautonomousvehiclescanreplacemanyofthesubsystemsmentionedpreviouslywithneuralblocks[
10
].Theseneuralblocks,properlyinterconnectedandtrainedwiththecorrectdataarecapableofobtainingperformancesgreaterthan95%forthepredictionofvehiclecontrolvariables[
11]
.Anadvantageofthesemodelsisthattheygenerallyrequirefeweronboardsensorsasthemainsourceof
Electronics2021,10,1266.
/10.3390/electronics10111266
/journal/electronics
Electronics2021,10,12662of
21
informationfedtotheDNNsusuallyconsistsofRGBimagesandkinematicdatafromaninertialmeasurementunit(IMU)[
12
].Thismakesend-to-enddrivingsystemsmoreeasilyaccessiblethanthetraditionalperceptionsubsystemswithsensorssuchasLIDARwhichareverycostly.
Figure1.Traditionaldrivingsystemscomparedtoend-to-enddrivingsystem.
Deeplearningmethodsforautonomousdrivinghavegainedpopularitywithadvance-mentsinhardware,suchasGPUs,andmorereadilyavailabledatasets,bothforend-to-enddrivingtechniques[
13
]andtheuseofdeeplearninginindividualsubsystems[
14
].Therehavebeenavarietyofdifferentapproachesforthedevelopmentofdrivingapplicationsusingendtoendlearningtechniques.Inonestudy,a98%accuracywasobtainedusingconvolutionalneuralnetworks(CNN)togeneratesteeringanglesfromimagesgeneratedbyafrontviewcamera[
15
].Inasimilarwork,asequenceofimagesfromapublicdatasetwasusedasinputtotheCNN,topredictwhetherthevehiclewasaccelerating,deceleratingormaintainingspeedaswellascalculatingthesteeringangle[
16]
.
AninterestingapproachdesignedaCNNtodevelopahuman-likeautonomousdrivingsystemwhichaimstoimitatehumanbehaviormeaningthevehiclecanbetteradapttorealroadconditions[
13
].Theauthorsused3DLIDARdataasinputtothemodelandgeneratedsteeringandspeedcommands,andinadrivingsimulationmanagedtodecreaseaccidentswiththeautonomoussystemten-foldcomparedwiththehumandriver.AdrivingsimulatorwasalsousedtotestaCNN-basedclosedloopfeedbacktocontrolthesteeringangleofthevehicle[
17
].TheauthorsdesignedtheirownCNN,DAVE-2SKY,usingtheCaffedeeplearningframeworkandtestedthesysteminalane-keepingsimulation.Theresultswerepromising,althoughproblemsoccurredifthedistancetothevehicleinfrontbecamelessthan9m.
Variouslongshort-termmemory(LSTM)modelshavealsobeenstudied.Aconvolu-tionalLSTMmodelwithbackpropagationwastrainedtoobtainthesteeringanglefromvideoframesusingtheUdacitydataset[
18]
.AnFCN-LSTMarchitecturewasusedtopredictdrivingactionsandmotionfromimagesobtainingalmost85%accuracy.Acon-volutionalLSTMmodelwasalsousedtopredictsteeringanglesfromastreamofimagesfromafrontfacingcamera[
19
],improvingontheresultsfrompreviousworks[
20]
.
Anotherapproachconsistsinaddingmoresensors.Inoneworkadatasetwasobtainedusingsurroundviewcamerasinadditiontothetypicalfrontviewcamera[
21
].ThedataobtainedbythecameraswasusedtopredictthespeedandsteeringangleusingexistingpretrainedCNNmodels.Theuseofsurroundviewcamerasimprovedtheresultsobtainedatlowspeeds(<20km/h),butatgreaterspeedstheimprovementwaslesssignificant.
Inthiswork,wepresentadetailedstudyimplementingsixend-to-endDNNarchitec-turesforthepredictionofthevehiclespeedandthesteeringwheelangle.Thearchitectureshavebeentrainedandtestedusing78,011imagesfromrealdrivingscenarios,whichwerecapturedbytheCloudIncubatorCar(CIC)autonomousvehicle[
2]
.
Electronics2021,10,12663of
21
2.MaterialsandMethods
DNNend-to-endarchitecturesrequirelargevolumesofdataforthemodelstocon-vergecorrectly.ThedataneededtocreateDNNmodelsforautonomousdrivingorADAScanbeobtainedfromthreedifferenttypesofsources:
1.Adhoctests.Toperformthistypeoftesting,largeresourcesarerequired,intheformofoneormorevehicles,expensiveperceptionsystems(e.g.,LIDAR)andpersonnelcapableoftheinstallation,integrationandcommissioningofsophisticatedsensorsanddatarecordingsystems.Inaddition,thedatamustbepost-processed,andthesynchronizationofthedifferentvehicleinformationsourcesisrequired.
2.Publicdatasets.Therearedatasetsdevelopedbybusinessesanduniversitiesforau-tonomousdrivingwheredataobtainedfromtheperceptionsystemsoftheirvehiclescanbeaccessed[
10
].Someofthesepresentdiversescenarioswithdifferentlightandmeteorologicalconditions[
22
].Table
1
showssomerecentpublicdatasetsincludingnumberofsamples,typesofimagesavailableandtypesofvehiclecontrolactionsstored.
3.Simulators.Giventhecomplexityofconductingrealtests,autonomousdrivingsimulatorshavebecomeoneofthemostwidelyusedalternatives.Thesimulationindustryrangesfromsimulationplatforms,vehicledynamicssimulationandsensorsimulationtoscenariosimulationandevenscenariolibraries.Atpresent,therearemanyoptions,includinggenericsolutionswhichmakeuseofgamesandphysicenginesforsimulation[
23
]androboticssimulators[
16]
.Recentlyonthemarketcompaniesthatdevelopsimulationproductsspecificallydesignedtosatisfytheneedsofautonomousdrivinghaveappeared.SomeofthesecompaniesincludeCognata,CARLA,METAMOTO,etc.
Table1.Publicdatasetsforautonomousdriving.
Ref./Year
Samples
ImageType
LIDAR
RADAR
IMU
ControlActions
UPCT2019
78,000
RGB,Depth
Yes
No
Yes
Steeringwheel,Speed
LyftL5[
24
]/2019
323,000
RGB
Yes
No
Yes
-
nuScenes[
25
]/2019
1,400,000
RGB
Yes
Yes
Yes
-
Pandaset[
22
]/2019
48,000
RGB
Yes
No
Yes
-
Waymo[
23
]/2019
1,000,000
RGB
Yes
No
Yes
-
Udacity[
16
]/2016
34,000
RGB
Yes
No
Yes
Steeringwheel
GAC[
26
]/2019
3,240,000
RGB
No
No
No
Steeringwheel,Speed
Inthisworkadhocdatahasbeenchosen.Toobtainthedata,acustomdatasetwascreated,astheresultofadhocdrivingtestsperformedusingtheCloudIncubatorCarautonomousvehicle(CICar)[
2
](seeFigure
2),anautonomousvehicleprototypebased
ontheadaptionofthecommercialelectricvehicle,RenaultTwizy.Thevehiclehasbeenconvenientlymodifiedandhousesacompleteperceptionsystemconsistingofa2DLIDAR,3DHDLIDAR,ToFcameras,aswellasalocalizationsystemwhichcontainsareal-timekineticunit(RTK)andinertialmeasurementunit(IMU,seeFigure
2
c)andautomationofthedrivingelementsofthevehicle(accelerator,brake,steeringandgearbox).Allofthisiscomplementedwiththebiometricdataofthedriverstakenduringthedrivingtests.
2.1.DrivingTests
Agroupof30driversofdifferentageandgenderwereselectedtoperformthedrivingtests,ofwhichfivewerediscardedduetosynchronizationproblems,recordingfailureorincompletedata.ThedrivingtestswerecarriedoutinCartagenaintheRegionofMurcia,Spain,followingapreviouslyselectedroutewithrealtraffic.
Thisrouteprovidesasignificantsetoftypicalurbandrivingscenarios:(a)junctionswithrightofwayandchangesofpriority;(b)incorporation,internalcirculationandexitingofaroundabout;(c)drivingalongaroadwithandparkingareas;(d)mergingtraffic
Electronics2021,10,12664of
21
situations.Inordertocontemplateagreatervarietyofenvironmentalconditions,eachdrivercompletedtheroutetwiceatdifferenttimesofday(morning,afternoonorevening).InFigure
3
asampleofsomeofthedatasetimagesisshown,wheresomeofthedifferentdrivingconditionscapturedduringthetestscanbeobserved.
Figure2.(a)CloudIncubatorCarautonomousvehicle(CiCar).(b)CiCarondataacquisitionmission.(c)VehiclemodelandIMUsensormeasurementdetails.
Figure3.Imagesfromdataset.(a)pedestriancrossing;(b)saturationoftheilluminationonroundabout;(c)carbraking;(d)complexshadowsontheroad.
2.2.VehicleConfiguration
Asmentionedpreviously,thedatawascollectedusingtheCICarprototypevehicleinmanualmode,drivenbyahumandriver.InTable
2
thevariablesanddataacquiredduringthedrivingtestsareshown,aswellastheinformationaboutthedevicesandsystemsusedtoobtainthedata.
Eachsensorworkswithitsownsamplerate,andinmostcasesthisisdifferentbetweendevices.Toachievethecorrectdatasynchronizationandreconstructthetemporalsequencewithprecision,stampingtimeshavebeengeneratedforeachsensorandthesehavebeensynchronizedatthestartandendoftherecording.Therefore,allthedevicesarecontrolledbythecontrolunitonboardthevehicle,providingaperfecttemporalandspatialsynchronizationofthedataobtainedbythedifferentsensors.Thedatafromeachtestisdownloadedandstoredinthecentralserveroncethedrivehasfinished.
Electronics2021,10,12665of
21
Table2.CICar.Sensordata.
Variable/Unit
Device/System
Frequency
Vehicleposition/(LLA)1
4Hz
acceleration/(m/s2)
GNSS-IMU
20Hz
angularspeed/(。/s)
20Hz
Steeringwheelangle/(。)Distance/(m)
Speed/(m/s)
compactRioControlunit
50Hz
50Hz
50Hz
Frontalimage/
RGBDCamera
25fps
Driverattentionimage
RGBCamera
25fps
SurroundingsCloudPoints
LIDARs,ToFcameras
10Hz
1LLA—latitude,longitude,andaltitude.
2.3.DeepLearningEnd-to-EndArchitecturesClassification
End-to-end(e2e)systemsbasedonDNNarchitecturesappliedtoautonomousdrivingcanmodelthecomplexrelationshipsextractedfromtheinformationobtainedfromthevehicleperceptionsystem.Thisisachievedusingdifferenttypesofneuralblocksgroupedintolayers(e.g.,convolutionallayers,fully-connectedlayers,recurrentlayers,etc.),withtheaimofgeneratingdirectcontrolactionsonthesteeringwheel,theacceleratorandthebrake.Theseactionsonthevehiclecontrolelementscanbecategorical,e.g.,increaseordecreasethespeed,ortheycangenerateasetpointonthecontroller,e.g.,turn13.6degreesorreach45km/h.
Themachinelearningalgorithmsthatareusedtomodeldrivingactionsbelongtothesetknownassupervisedlearning.Thesealgorithmsacquireknowledgefromadatasetofsamplespreviouslyacquiredduringdrivingtestswithapreviouslyconditionedvehicle[
2]
orfromdrivingsimulators[
27
].Thesedatasetsincludedatafromtheperceptionsystem,suchas:images(RGBoIR),LIDAR,RADAR,IMU,aswellastheactionsperformedbythedriveronthevehiclecontrolelements,suchasthesteeringwheel,theacceleratorandthebrake.
Thegenerationofdiscretevariablesbyamachinelearningalgorithmisknownasregressionandisawidelystudiedproblem[
28]
.RegressionmodelsforDNNusethegradientdescentfunctiontosearchfortheoptimalweightsthatminimizethelossfunction.Thelossfunctionsusedforthesemodelsdifferfromthoseusedintheclassificationmodels,withthemostusedbeingthemeanabsoluteerror,meansquareabsoluteerrorormeanabsolutepercentageerror,amongothers.
Thisworkproposesaclassificationofe2earchitecturesbasedonthetypeofdatareceivedbytheDNNfromthevehicleperceptionsystem.Thisisdonebyconsideringtheimageprovidedbythevisualperceptionsystemofthevehicleasthemaindatasourceforthee2earchitecture.Basedonthetypeofnetworkinput,thearchitectureshavebeenclassifiedintothreetypes:(1)singledatae2earchitecture(SiD-e2e),(2)mixeddatae2earchitecture(MiD-e2e)andsequentialdatae2earchitecture(SeD-e2e).
2.3.1.SiD-e2eArchitecture
Thistypeofarchitectureusesasingledatasourcefortheinputlayertogeneratethesetpointsdirectlyforthecontrolelementsofthevehicle.TheSiDarchitecturesusethevisualinformationprovidedbyoneormorecameraslocatedonthefrontandperipheryofthevehicletocomposeasingleimageofthevehiclesfieldofviewofthevehicleasavisualinputtothenetwork[
15,
29,
30
].BeforebeingprocessedbytheDNN,theimagesarereducedinsizeandnormalized.Subsequently,theimagesgothroughconvolutionallayersofdifferentkernelsize(kk)anddepth(d)whichallowtheimagefeaturesthatminimizethecostfunctiontobeextractedautomaticallyinsuccessivelayers.Aftertheconvolutionallayers,theresultingvectoristransformedintoonedimension(Flayer)andconnectedtoasetoffully-connectedlayers(FC)whichhavethedecision-makingcapacity.Lastly,theFClayersendinthenumberofneuronsequaltothenumberofvariablestobe
Electronics2021,10,12666of
21
predicted[
15,
28
].Figure
4
showsanexampleoftheSiDarchitecturewherethenormalizedimagefeedsagroupofconvolutionallayerswithdifferentkernelsizes,followedbyasetoffully-connectedlayersandafinaloutputlayer.
Figure4.Singledatae2earchitecture(SiD).
Thenumberofconvolutionallayers,theirsize,paddingandstride,aswellasthenumberofneuronsintheFClayersareadjustedempirically.Theseparametersarede-pendentonthetrainingdatasetandthesizeoftheinputimages.Thereareworkswherethearchitectureshavebeendesignedusingbanksofconvolutionalfiltersofincreasingsize[
30
]andthereareotherswherethedesignistheopposite[
31,
32
].Generallyspeaking,theconvolutionallayerswithasmallkernelsizeextractreducedspatialcharacteristics,suchastrafficsigns,trafficlightsorlaneseparationlines,whilethosewithagreaterkernelsizedetectlargerelementsintheimage,suchasvehicles,pedestriansortheroad[
31]
.
2.3.2.MiD-e2eArchitecture
Mixeddataarchitecturesallowdifferentdatasourcesfromthevehicle,suchasRADAR,longitudinalandlateralaccelerations,angularvelocities,mapsorGPStobemergedtogetherwiththevisualinformationfromthevehicle’scameras.TheinclusionofmoreinformationsourcesintheDNNaimsto:(1)improvetheperformanceofthemodel,(2)improvethepredictionofspecificcasesorabnormaldriving;and(3)increasethetolerancetofailuresproducedbythedatasources[
21,
29,
33
].AsshowninFigure
5,thistypeof
architecturecombinestheresultsoftheSiD-e2e,suchasthoseshowninthepreviousSection
2.3.1
,withasetofFClayerswhichallowsthemappingofthecharacteristicsfromothervehicledatasourcesonalayerthatconcatenatesalltheinformation.
Figure
5
showsafirstinputbranchwheretherelevantinformationisextractedfromtheimagewithasecondbranchthatextractsextrainformation,forexamplefromtheIMUorGPS.Theconcatenationlayerreceivesaspecifiednumberofinputsfrombothbranchesofthemodel.Thenumberofconnectionsfromeachbranchisusuallydeterminedusingempiricaltechniques.MiDarchitectureishabituallyusedindatafusionintheperceptionsystemsofautonomousvehiclesorADAS.
Electronics2021,10,12667of
21
Figure5.Mixeddatae2earchitecture(MiD).
2.3.3.SeD-e2eArchitecture
Drivingisataskwherethefutureactionsonthevehicle’scontrolelementsdependgreatlyonthepreviousactions,thereforethepredictionofthecontrolactionscanbemodeledasatimeseriesanalysis[
16,
26,
34
].Sequentialdatabasedarchitecturesaimtomodelthetemporalrelationshipsofthedatausingfeedbackneuralunits(seeFigure
6
),thesetypesofneuralnetworksareknownasrecurrentneuralnetworks(RNN)[
34
].BasicRNNscanlearntheshort-termdependenciesofthedatabuttheyhaveproblemswithcapturingthelong-termdependenciesduetovanishinggradientproblems[
35
].Tosolvethevanishinggradientproblems,moresophisticatedRNNarchitectureshaveappearedwhichuseactivationfunctionsbasedongatingunits.Thegatingunithasthecapacityofconditionallydecidingwhatinformationisremembered,forgottenorforpassingthroughtheunit.Thelongshort-termmemory(LSTM)[
36
]andGRU(gatedrecurrentunit)aretwoexamplesofthesekindsofRNNarchitectures[
37]
.
Figure6.Sequentialdatae2earchitecture(SeD).
RNN[
15
],LSTM(longshort-termmemory)[
16
]andGRU(gatedrecurrentunit)arethemostusedformodelingthetemporalrelationshipsinthefieldofe2earchitectures.TheuseofRNNine2earchitecturesrequiresthenetworkinputdatatobetransformedintotemporalsequencesintheformoftimesteps(ts).ThepartitioningoftheNinputsamples
Electronics2021,10,12668of
21
ofthenetworkwillgenerate(N-ts)temporalsequencesthatwillcorrespondtoanoutputvectorfromthenetworkaccordingtoEquation(1):
S.input=f[I1,..,Its],[I2,..,Its+1]...,[In1ts,..,IN-1]g,
output=fots+1,ots+2,............,oNg
(1)
Figure
7
showstheprocedurestogenerateN-tssequencesofsizetsfromadatasetcomposedofNimagesandNpairsofoutputvalues(v:speed,θ:steeringwheelangle).
Figure7.Compositionofsequentialimagesandoutputvaluesdata.
TocreateamodelfromtheSeD-e2earchitectures,thiswillbetrainedwithtemporalsequencesofsizets(I1toIts)andthenextoutputvectortopredict(vts+1,θts+1)asitisshownintheFigure
7.
2.4.ParemetersofDeepNeuralNetworkArchitectures
ThenumberofparameterswhichcomeintoplayduringthedesignprocessofaDNNisenormousandwecanseparatethemintothreetypes:
(1)Networkinputparameters.Theseparametersrefertothewaythenetworkinputvaluesarepresented.Fordataintheformofimages,theshapeparametersinclude:.Normalization.NormalizationmustbeperformedonthedatabeforetrainingtheDNN.Anadequatenormalizationcanimprovetheconvergenceandperformance
ofthenetwork.Equations(2)and(3)showthemostcommontechniques.
Scaled(0,1)=(xi-min)/(max-min)(
2)
Standarized(m=0,σ=1)=(xi-m)/(σ)(3)whereminandmax,arethemaximumandminimumvaluespresentinthedatasetX={x1,...,xN},withuandσbeingtheaverageandstandarddeviationofthedataset,respectively.Thereareothernormalizationtechniques,forexample,themeancanbesubstitutedforthemodeinEquation(3),forcasesinwhichthedatadistributiondoesnotalignbelowthemean.
.Resizing.Asageneralruleandespeciallyine2earchitecturesforautonomousdriving,theimagesizeisreducedbeforebeingprocessedbythenetwork.Themainreasonforthisistodecreasethenetworkprocessingtimeandtheresourcesinvolvedintheprediction.
.Colorspacetransformations.Itiscommontotransformtheinputimagetoacolorspaceotherthantheonesuppliedbythecameratoimproveperformance,forexampleHSI,LAB,etc.,[
10]
.
.Preprocessing.Whenthedataiscapturedfromdifferentsourcesordataset,thesetendtohavedisparatefeaturesfromthedeviseitselforfromthelightingof
Electronics2021,10,12669of
21
thescenewheretheimageswerecaptured,thereforehistogramequalizationorimageenhancementalgorithmsareusuallyappliedtonormalizetheappearanceoftheentiredataset.
.Dataaugmentation.Thistechniqueconsistsinincreasingthesizeoftheoriginaldatasetinordertoachievehigherlevelsofgeneralizationandtoimprovetheperformanceofthenetwork[
38]
.
(2)Architectureconfigurationparameters.Theseparametersconstitutethecomposition
ofonearchitectureoranother,andtheseinclude:
.Typeoflayer.Thearchitecturescanstackdifferentsetsoflayersineachbranch:FC,Convolutional,RNN,Concatenated,etc.
.Layersettings.Eachlayerhasspecificconfigurations,forexample,convolutionallayerscanbeconfiguredwithdifferenttypesoffilters,33,55,...,kk,theirdepthornumberoflayers.
.Layerdistribution.Thearchitecturescanconsistofasinglebranch,canbebranchedattheinput,orattheoutputorboth.
(3)Hyperparameters.Theseparametersarecharacteristicofthelearningprocessimplicit
inDNN,andamongthemare:
.Batchsize.Numberofsamplesthatwillbepassedthroughthenetworkbeforeupdatingtheweights.
.NumberofEpochs.Numberoftimesthelearningalgorithmwillworkwiththetrainingdataset.
.OptimizationAlgorithm.Themostwidelyusedisthegradientdescentalgorithm.However,variationshavebeendeveloped,suchasAdaGradwhichadjuststhelearningrate.AnothervariantisAdam,withadaptivemomentum.
.Learningrate.Theoptimizationalgorithmallowshowmuchtheweightsareupdatedattheendofeachbatchtobecontrolled.
.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年食品企业厂长聘任协议范本
- 2024年度专项法律支持公司协议
- 2024公司行政人员专属劳动协议草案
- 文书模板-应届生三方协议签订流程
- 2024年子女赡养义务履行协议
- 2024年家用电器保修协议样本
- 办公室装修升级协议模板 2024
- 2024年汽车短期租赁服务协议模板
- 2024外部资金注入协议范例
- 2024年规范股权托管合作协议样本
- 部编人教版六年级上册语文全册课文教学课堂实录
- 人教版一年级起点小学四年级英语上册全套教案
- 境外汇款申请书(完成)
- 小学三年级、三班家长会
- 五年级主题班会 家长会 课件(共28张PPT)
- 中学生学习策略量表(LASSI)
- 活性炭吸附装置安全操作保养规程
- 绳索救援演示教学课件
- 电力调查的报告
- 《国有企业招投标及采购管理办法》
- 充电桩工程施工方法及施工方案
评论
0/150
提交评论