端对端深度神经网络架构在汽车自动驾驶车速及转向角预测的应用-2023-05-自动驾驶_第1页
端对端深度神经网络架构在汽车自动驾驶车速及转向角预测的应用-2023-05-自动驾驶_第2页
端对端深度神经网络架构在汽车自动驾驶车速及转向角预测的应用-2023-05-自动驾驶_第3页
端对端深度神经网络架构在汽车自动驾驶车速及转向角预测的应用-2023-05-自动驾驶_第4页
端对端深度神经网络架构在汽车自动驾驶车速及转向角预测的应用-2023-05-自动驾驶_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

electronics

Article

End-to-EndDeepNeuralNetworkArchitecturesforSpeedandSteeringWheelAnglePredictioninAutonomousDriving

PedroJ.Navarro1,*,LeanneMiller1,FranciscaRosique1,CarlosFernindez-Isla1andAlbertoGila-Navarro2

checkfor

updates

Citation:Navarro,P.J.;Miller,L.;Rosique,F.;Fernández-Isla,C.;

Gila-Navarro,A.End-to-EndDeepNeuralNetworkArchitecturesfor

SpeedandSteeringWheelAngle

PredictioninAutonomousDriving.

Electronics2021,10,1266.

https://

/10.3390/electronics10111266

AcademicEditors:DongSeogHan,KalyanaC.VeluvoluandTakeoFujii

Received:13April2021

Accepted:18May2021

Published:25May2021

Publisher’sNote:MDPIstaysneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffil-iations.

Copyright:©2021bytheauthors.LicenseeMDPI,Basel,Switzerland.ThisarticleisanopenaccessarticledistributedunderthetermsandconditionsoftheCreativeCommons

Attribution(CCBY)license(https://

/licenses/by/

4.0/).

1

2

*

Divisi6ndeSistemaseIngenier½aElectr6nica(DSIE),CampusMuralladelMar,s/n,UniversidadPolitécnicadeCartagena,30202Cartagena,Spain;ler@upct.es(L.M.);paqui.rosique@upct.es(F.R.);

carlos.fernandez@upct.es(C.F.-I.)

GenéticaMolecular,InstitutodeBiotecnolog½aVegetal,EdificioI+D+I,PlazadelHospitals/n,UniversidadPolitécnicadeCartagena,30202Cartagena,Spain;alberto.gilan@um.es

Correspondence:pedroj.navarro@upct.es;Tel.:+34-968-32-6546

Abstract:Thecomplexdecision-makingsystemsusedforautonomousvehiclesoradvanceddriver-assistancesystems(ADAS)arebeingreplacedbyend-to-end(e2e)architecturesbasedondeep-neural-networks(DNN).DNNscanlearncomplexdrivingactionsfromdatasetscontainingthousandsofimagesanddataobtainedfromthevehicleperceptionsystem.Thisworkpresentstheclassification,designandimplementationofsixe2earchitecturescapableofgeneratingthedrivingactionsofspeedandsteeringwheelangledirectlyonthevehiclecontrolelements.Theworkdetailsthedesignstagesandoptimizationprocessoftheconvolutionalnetworkstodevelopsixe2earchitectures.Inthemetricanalysisthearchitectureshavebeentestedwithdifferentdatasourcesfromthevehicle,suchasimages,XYZaccelerationsandXYZangularspeeds.Thebestresultswereobtainedwithamixeddatae2earchitecturethatusedfrontimagesfromthevehicleandangularspeedstopredictthespeedandsteeringwheelanglewithameanerrorof1.06%.Anexhaustiveoptimizationprocessoftheconvolutionalblockshasdemonstratedthatitispossibletodesignlightweighte2earchitectureswithhighperformancemoresuitableforthefinalimplementationinautonomousdriving.

Keywords:autonomousdriving;end-to-endarchitecture;speedandsteeringwheelangleprediction;DNNforregression

1.Introduction

Autonomousdrivingtechnologyhasadvancedgreatlyinrecentyears,butitisstillanongoingchallenge.Traditionally,intelligentdecisionmakingsystemsonboardautonomousvehicleshavebeencharacterizedbytheirenormouscomplexity[

1

]andarecomposedofmultiplesubsystems,includingaperceptionsystem,globalandlocalnavigationsystems,acontrolsystem,asurroundingsinterpretationsystem,etc.,[

2

].Thesesubsystemsarecombinedaimingtocoverthecomplicateddecisionsandtaskswhichthevehiclemustperformwhilstdriving.Toobtaintheobjectivesofthevehicle,thesesubsystemsuseawiderangeoftechniqueswhichinclude:cognitivesystems[

3

],agentsystems[

4

],fuzzysystems[

5

],neuralnetworks[

6

],evolutionaryalgorithms[

7

]orrule-basedmethods[

8]

.

Deeplearningtechniquesarebecomingincreasinglypopularandarenowavaluabletoolinawiderangeofindustries,includingtheautomotiveindustry,duetotheirpowerfulimagefeatureextraction.Thesetechniqueshaveallowedtheso-calledend-to-end(e2e)drivingapproachtoappear,simplifyingthetraditionalsubsystemsgreatlyandreducingthetasksofmodelingandcontrolofthevehicle[

9

](Figure

1).TheappearanceofDNNs

meanthatdecision-makingsystemsonboardautonomousvehiclescanreplacemanyofthesubsystemsmentionedpreviouslywithneuralblocks[

10

].Theseneuralblocks,properlyinterconnectedandtrainedwiththecorrectdataarecapableofobtainingperformancesgreaterthan95%forthepredictionofvehiclecontrolvariables[

11]

.Anadvantageofthesemodelsisthattheygenerallyrequirefeweronboardsensorsasthemainsourceof

Electronics2021,10,1266.

/10.3390/electronics10111266

/journal/electronics

Electronics2021,10,12662of

21

informationfedtotheDNNsusuallyconsistsofRGBimagesandkinematicdatafromaninertialmeasurementunit(IMU)[

12

].Thismakesend-to-enddrivingsystemsmoreeasilyaccessiblethanthetraditionalperceptionsubsystemswithsensorssuchasLIDARwhichareverycostly.

Figure1.Traditionaldrivingsystemscomparedtoend-to-enddrivingsystem.

Deeplearningmethodsforautonomousdrivinghavegainedpopularitywithadvance-mentsinhardware,suchasGPUs,andmorereadilyavailabledatasets,bothforend-to-enddrivingtechniques[

13

]andtheuseofdeeplearninginindividualsubsystems[

14

].Therehavebeenavarietyofdifferentapproachesforthedevelopmentofdrivingapplicationsusingendtoendlearningtechniques.Inonestudy,a98%accuracywasobtainedusingconvolutionalneuralnetworks(CNN)togeneratesteeringanglesfromimagesgeneratedbyafrontviewcamera[

15

].Inasimilarwork,asequenceofimagesfromapublicdatasetwasusedasinputtotheCNN,topredictwhetherthevehiclewasaccelerating,deceleratingormaintainingspeedaswellascalculatingthesteeringangle[

16]

.

AninterestingapproachdesignedaCNNtodevelopahuman-likeautonomousdrivingsystemwhichaimstoimitatehumanbehaviormeaningthevehiclecanbetteradapttorealroadconditions[

13

].Theauthorsused3DLIDARdataasinputtothemodelandgeneratedsteeringandspeedcommands,andinadrivingsimulationmanagedtodecreaseaccidentswiththeautonomoussystemten-foldcomparedwiththehumandriver.AdrivingsimulatorwasalsousedtotestaCNN-basedclosedloopfeedbacktocontrolthesteeringangleofthevehicle[

17

].TheauthorsdesignedtheirownCNN,DAVE-2SKY,usingtheCaffedeeplearningframeworkandtestedthesysteminalane-keepingsimulation.Theresultswerepromising,althoughproblemsoccurredifthedistancetothevehicleinfrontbecamelessthan9m.

Variouslongshort-termmemory(LSTM)modelshavealsobeenstudied.Aconvolu-tionalLSTMmodelwithbackpropagationwastrainedtoobtainthesteeringanglefromvideoframesusingtheUdacitydataset[

18]

.AnFCN-LSTMarchitecturewasusedtopredictdrivingactionsandmotionfromimagesobtainingalmost85%accuracy.Acon-volutionalLSTMmodelwasalsousedtopredictsteeringanglesfromastreamofimagesfromafrontfacingcamera[

19

],improvingontheresultsfrompreviousworks[

20]

.

Anotherapproachconsistsinaddingmoresensors.Inoneworkadatasetwasobtainedusingsurroundviewcamerasinadditiontothetypicalfrontviewcamera[

21

].ThedataobtainedbythecameraswasusedtopredictthespeedandsteeringangleusingexistingpretrainedCNNmodels.Theuseofsurroundviewcamerasimprovedtheresultsobtainedatlowspeeds(<20km/h),butatgreaterspeedstheimprovementwaslesssignificant.

Inthiswork,wepresentadetailedstudyimplementingsixend-to-endDNNarchitec-turesforthepredictionofthevehiclespeedandthesteeringwheelangle.Thearchitectureshavebeentrainedandtestedusing78,011imagesfromrealdrivingscenarios,whichwerecapturedbytheCloudIncubatorCar(CIC)autonomousvehicle[

2]

.

Electronics2021,10,12663of

21

2.MaterialsandMethods

DNNend-to-endarchitecturesrequirelargevolumesofdataforthemodelstocon-vergecorrectly.ThedataneededtocreateDNNmodelsforautonomousdrivingorADAScanbeobtainedfromthreedifferenttypesofsources:

1.Adhoctests.Toperformthistypeoftesting,largeresourcesarerequired,intheformofoneormorevehicles,expensiveperceptionsystems(e.g.,LIDAR)andpersonnelcapableoftheinstallation,integrationandcommissioningofsophisticatedsensorsanddatarecordingsystems.Inaddition,thedatamustbepost-processed,andthesynchronizationofthedifferentvehicleinformationsourcesisrequired.

2.Publicdatasets.Therearedatasetsdevelopedbybusinessesanduniversitiesforau-tonomousdrivingwheredataobtainedfromtheperceptionsystemsoftheirvehiclescanbeaccessed[

10

].Someofthesepresentdiversescenarioswithdifferentlightandmeteorologicalconditions[

22

].Table

1

showssomerecentpublicdatasetsincludingnumberofsamples,typesofimagesavailableandtypesofvehiclecontrolactionsstored.

3.Simulators.Giventhecomplexityofconductingrealtests,autonomousdrivingsimulatorshavebecomeoneofthemostwidelyusedalternatives.Thesimulationindustryrangesfromsimulationplatforms,vehicledynamicssimulationandsensorsimulationtoscenariosimulationandevenscenariolibraries.Atpresent,therearemanyoptions,includinggenericsolutionswhichmakeuseofgamesandphysicenginesforsimulation[

23

]androboticssimulators[

16]

.Recentlyonthemarketcompaniesthatdevelopsimulationproductsspecificallydesignedtosatisfytheneedsofautonomousdrivinghaveappeared.SomeofthesecompaniesincludeCognata,CARLA,METAMOTO,etc.

Table1.Publicdatasetsforautonomousdriving.

Ref./Year

Samples

ImageType

LIDAR

RADAR

IMU

ControlActions

UPCT2019

78,000

RGB,Depth

Yes

No

Yes

Steeringwheel,Speed

LyftL5[

24

]/2019

323,000

RGB

Yes

No

Yes

-

nuScenes[

25

]/2019

1,400,000

RGB

Yes

Yes

Yes

-

Pandaset[

22

]/2019

48,000

RGB

Yes

No

Yes

-

Waymo[

23

]/2019

1,000,000

RGB

Yes

No

Yes

-

Udacity[

16

]/2016

34,000

RGB

Yes

No

Yes

Steeringwheel

GAC[

26

]/2019

3,240,000

RGB

No

No

No

Steeringwheel,Speed

Inthisworkadhocdatahasbeenchosen.Toobtainthedata,acustomdatasetwascreated,astheresultofadhocdrivingtestsperformedusingtheCloudIncubatorCarautonomousvehicle(CICar)[

2

](seeFigure

2),anautonomousvehicleprototypebased

ontheadaptionofthecommercialelectricvehicle,RenaultTwizy.Thevehiclehasbeenconvenientlymodifiedandhousesacompleteperceptionsystemconsistingofa2DLIDAR,3DHDLIDAR,ToFcameras,aswellasalocalizationsystemwhichcontainsareal-timekineticunit(RTK)andinertialmeasurementunit(IMU,seeFigure

2

c)andautomationofthedrivingelementsofthevehicle(accelerator,brake,steeringandgearbox).Allofthisiscomplementedwiththebiometricdataofthedriverstakenduringthedrivingtests.

2.1.DrivingTests

Agroupof30driversofdifferentageandgenderwereselectedtoperformthedrivingtests,ofwhichfivewerediscardedduetosynchronizationproblems,recordingfailureorincompletedata.ThedrivingtestswerecarriedoutinCartagenaintheRegionofMurcia,Spain,followingapreviouslyselectedroutewithrealtraffic.

Thisrouteprovidesasignificantsetoftypicalurbandrivingscenarios:(a)junctionswithrightofwayandchangesofpriority;(b)incorporation,internalcirculationandexitingofaroundabout;(c)drivingalongaroadwithandparkingareas;(d)mergingtraffic

Electronics2021,10,12664of

21

situations.Inordertocontemplateagreatervarietyofenvironmentalconditions,eachdrivercompletedtheroutetwiceatdifferenttimesofday(morning,afternoonorevening).InFigure

3

asampleofsomeofthedatasetimagesisshown,wheresomeofthedifferentdrivingconditionscapturedduringthetestscanbeobserved.

Figure2.(a)CloudIncubatorCarautonomousvehicle(CiCar).(b)CiCarondataacquisitionmission.(c)VehiclemodelandIMUsensormeasurementdetails.

Figure3.Imagesfromdataset.(a)pedestriancrossing;(b)saturationoftheilluminationonroundabout;(c)carbraking;(d)complexshadowsontheroad.

2.2.VehicleConfiguration

Asmentionedpreviously,thedatawascollectedusingtheCICarprototypevehicleinmanualmode,drivenbyahumandriver.InTable

2

thevariablesanddataacquiredduringthedrivingtestsareshown,aswellastheinformationaboutthedevicesandsystemsusedtoobtainthedata.

Eachsensorworkswithitsownsamplerate,andinmostcasesthisisdifferentbetweendevices.Toachievethecorrectdatasynchronizationandreconstructthetemporalsequencewithprecision,stampingtimeshavebeengeneratedforeachsensorandthesehavebeensynchronizedatthestartandendoftherecording.Therefore,allthedevicesarecontrolledbythecontrolunitonboardthevehicle,providingaperfecttemporalandspatialsynchronizationofthedataobtainedbythedifferentsensors.Thedatafromeachtestisdownloadedandstoredinthecentralserveroncethedrivehasfinished.

Electronics2021,10,12665of

21

Table2.CICar.Sensordata.

Variable/Unit

Device/System

Frequency

Vehicleposition/(LLA)1

4Hz

acceleration/(m/s2)

GNSS-IMU

20Hz

angularspeed/(。/s)

20Hz

Steeringwheelangle/(。)Distance/(m)

Speed/(m/s)

compactRioControlunit

50Hz

50Hz

50Hz

Frontalimage/

RGBDCamera

25fps

Driverattentionimage

RGBCamera

25fps

SurroundingsCloudPoints

LIDARs,ToFcameras

10Hz

1LLA—latitude,longitude,andaltitude.

2.3.DeepLearningEnd-to-EndArchitecturesClassification

End-to-end(e2e)systemsbasedonDNNarchitecturesappliedtoautonomousdrivingcanmodelthecomplexrelationshipsextractedfromtheinformationobtainedfromthevehicleperceptionsystem.Thisisachievedusingdifferenttypesofneuralblocksgroupedintolayers(e.g.,convolutionallayers,fully-connectedlayers,recurrentlayers,etc.),withtheaimofgeneratingdirectcontrolactionsonthesteeringwheel,theacceleratorandthebrake.Theseactionsonthevehiclecontrolelementscanbecategorical,e.g.,increaseordecreasethespeed,ortheycangenerateasetpointonthecontroller,e.g.,turn13.6degreesorreach45km/h.

Themachinelearningalgorithmsthatareusedtomodeldrivingactionsbelongtothesetknownassupervisedlearning.Thesealgorithmsacquireknowledgefromadatasetofsamplespreviouslyacquiredduringdrivingtestswithapreviouslyconditionedvehicle[

2]

orfromdrivingsimulators[

27

].Thesedatasetsincludedatafromtheperceptionsystem,suchas:images(RGBoIR),LIDAR,RADAR,IMU,aswellastheactionsperformedbythedriveronthevehiclecontrolelements,suchasthesteeringwheel,theacceleratorandthebrake.

Thegenerationofdiscretevariablesbyamachinelearningalgorithmisknownasregressionandisawidelystudiedproblem[

28]

.RegressionmodelsforDNNusethegradientdescentfunctiontosearchfortheoptimalweightsthatminimizethelossfunction.Thelossfunctionsusedforthesemodelsdifferfromthoseusedintheclassificationmodels,withthemostusedbeingthemeanabsoluteerror,meansquareabsoluteerrorormeanabsolutepercentageerror,amongothers.

Thisworkproposesaclassificationofe2earchitecturesbasedonthetypeofdatareceivedbytheDNNfromthevehicleperceptionsystem.Thisisdonebyconsideringtheimageprovidedbythevisualperceptionsystemofthevehicleasthemaindatasourceforthee2earchitecture.Basedonthetypeofnetworkinput,thearchitectureshavebeenclassifiedintothreetypes:(1)singledatae2earchitecture(SiD-e2e),(2)mixeddatae2earchitecture(MiD-e2e)andsequentialdatae2earchitecture(SeD-e2e).

2.3.1.SiD-e2eArchitecture

Thistypeofarchitectureusesasingledatasourcefortheinputlayertogeneratethesetpointsdirectlyforthecontrolelementsofthevehicle.TheSiDarchitecturesusethevisualinformationprovidedbyoneormorecameraslocatedonthefrontandperipheryofthevehicletocomposeasingleimageofthevehiclesfieldofviewofthevehicleasavisualinputtothenetwork[

15,

29,

30

].BeforebeingprocessedbytheDNN,theimagesarereducedinsizeandnormalized.Subsequently,theimagesgothroughconvolutionallayersofdifferentkernelsize(kk)anddepth(d)whichallowtheimagefeaturesthatminimizethecostfunctiontobeextractedautomaticallyinsuccessivelayers.Aftertheconvolutionallayers,theresultingvectoristransformedintoonedimension(Flayer)andconnectedtoasetoffully-connectedlayers(FC)whichhavethedecision-makingcapacity.Lastly,theFClayersendinthenumberofneuronsequaltothenumberofvariablestobe

Electronics2021,10,12666of

21

predicted[

15,

28

].Figure

4

showsanexampleoftheSiDarchitecturewherethenormalizedimagefeedsagroupofconvolutionallayerswithdifferentkernelsizes,followedbyasetoffully-connectedlayersandafinaloutputlayer.

Figure4.Singledatae2earchitecture(SiD).

Thenumberofconvolutionallayers,theirsize,paddingandstride,aswellasthenumberofneuronsintheFClayersareadjustedempirically.Theseparametersarede-pendentonthetrainingdatasetandthesizeoftheinputimages.Thereareworkswherethearchitectureshavebeendesignedusingbanksofconvolutionalfiltersofincreasingsize[

30

]andthereareotherswherethedesignistheopposite[

31,

32

].Generallyspeaking,theconvolutionallayerswithasmallkernelsizeextractreducedspatialcharacteristics,suchastrafficsigns,trafficlightsorlaneseparationlines,whilethosewithagreaterkernelsizedetectlargerelementsintheimage,suchasvehicles,pedestriansortheroad[

31]

.

2.3.2.MiD-e2eArchitecture

Mixeddataarchitecturesallowdifferentdatasourcesfromthevehicle,suchasRADAR,longitudinalandlateralaccelerations,angularvelocities,mapsorGPStobemergedtogetherwiththevisualinformationfromthevehicle’scameras.TheinclusionofmoreinformationsourcesintheDNNaimsto:(1)improvetheperformanceofthemodel,(2)improvethepredictionofspecificcasesorabnormaldriving;and(3)increasethetolerancetofailuresproducedbythedatasources[

21,

29,

33

].AsshowninFigure

5,thistypeof

architecturecombinestheresultsoftheSiD-e2e,suchasthoseshowninthepreviousSection

2.3.1

,withasetofFClayerswhichallowsthemappingofthecharacteristicsfromothervehicledatasourcesonalayerthatconcatenatesalltheinformation.

Figure

5

showsafirstinputbranchwheretherelevantinformationisextractedfromtheimagewithasecondbranchthatextractsextrainformation,forexamplefromtheIMUorGPS.Theconcatenationlayerreceivesaspecifiednumberofinputsfrombothbranchesofthemodel.Thenumberofconnectionsfromeachbranchisusuallydeterminedusingempiricaltechniques.MiDarchitectureishabituallyusedindatafusionintheperceptionsystemsofautonomousvehiclesorADAS.

Electronics2021,10,12667of

21

Figure5.Mixeddatae2earchitecture(MiD).

2.3.3.SeD-e2eArchitecture

Drivingisataskwherethefutureactionsonthevehicle’scontrolelementsdependgreatlyonthepreviousactions,thereforethepredictionofthecontrolactionscanbemodeledasatimeseriesanalysis[

16,

26,

34

].Sequentialdatabasedarchitecturesaimtomodelthetemporalrelationshipsofthedatausingfeedbackneuralunits(seeFigure

6

),thesetypesofneuralnetworksareknownasrecurrentneuralnetworks(RNN)[

34

].BasicRNNscanlearntheshort-termdependenciesofthedatabuttheyhaveproblemswithcapturingthelong-termdependenciesduetovanishinggradientproblems[

35

].Tosolvethevanishinggradientproblems,moresophisticatedRNNarchitectureshaveappearedwhichuseactivationfunctionsbasedongatingunits.Thegatingunithasthecapacityofconditionallydecidingwhatinformationisremembered,forgottenorforpassingthroughtheunit.Thelongshort-termmemory(LSTM)[

36

]andGRU(gatedrecurrentunit)aretwoexamplesofthesekindsofRNNarchitectures[

37]

.

Figure6.Sequentialdatae2earchitecture(SeD).

RNN[

15

],LSTM(longshort-termmemory)[

16

]andGRU(gatedrecurrentunit)arethemostusedformodelingthetemporalrelationshipsinthefieldofe2earchitectures.TheuseofRNNine2earchitecturesrequiresthenetworkinputdatatobetransformedintotemporalsequencesintheformoftimesteps(ts).ThepartitioningoftheNinputsamples

Electronics2021,10,12668of

21

ofthenetworkwillgenerate(N-ts)temporalsequencesthatwillcorrespondtoanoutputvectorfromthenetworkaccordingtoEquation(1):

S.input=f[I1,..,Its],[I2,..,Its+1]...,[In1ts,..,IN-1]g,

output=fots+1,ots+2,............,oNg

(1)

Figure

7

showstheprocedurestogenerateN-tssequencesofsizetsfromadatasetcomposedofNimagesandNpairsofoutputvalues(v:speed,θ:steeringwheelangle).

Figure7.Compositionofsequentialimagesandoutputvaluesdata.

TocreateamodelfromtheSeD-e2earchitectures,thiswillbetrainedwithtemporalsequencesofsizets(I1toIts)andthenextoutputvectortopredict(vts+1,θts+1)asitisshownintheFigure

7.

2.4.ParemetersofDeepNeuralNetworkArchitectures

ThenumberofparameterswhichcomeintoplayduringthedesignprocessofaDNNisenormousandwecanseparatethemintothreetypes:

(1)Networkinputparameters.Theseparametersrefertothewaythenetworkinputvaluesarepresented.Fordataintheformofimages,theshapeparametersinclude:.Normalization.NormalizationmustbeperformedonthedatabeforetrainingtheDNN.Anadequatenormalizationcanimprovetheconvergenceandperformance

ofthenetwork.Equations(2)and(3)showthemostcommontechniques.

Scaled(0,1)=(xi-min)/(max-min)(

2)

Standarized(m=0,σ=1)=(xi-m)/(σ)(3)whereminandmax,arethemaximumandminimumvaluespresentinthedatasetX={x1,...,xN},withuandσbeingtheaverageandstandarddeviationofthedataset,respectively.Thereareothernormalizationtechniques,forexample,themeancanbesubstitutedforthemodeinEquation(3),forcasesinwhichthedatadistributiondoesnotalignbelowthemean.

.Resizing.Asageneralruleandespeciallyine2earchitecturesforautonomousdriving,theimagesizeisreducedbeforebeingprocessedbythenetwork.Themainreasonforthisistodecreasethenetworkprocessingtimeandtheresourcesinvolvedintheprediction.

.Colorspacetransformations.Itiscommontotransformtheinputimagetoacolorspaceotherthantheonesuppliedbythecameratoimproveperformance,forexampleHSI,LAB,etc.,[

10]

.

.Preprocessing.Whenthedataiscapturedfromdifferentsourcesordataset,thesetendtohavedisparatefeaturesfromthedeviseitselforfromthelightingof

Electronics2021,10,12669of

21

thescenewheretheimageswerecaptured,thereforehistogramequalizationorimageenhancementalgorithmsareusuallyappliedtonormalizetheappearanceoftheentiredataset.

.Dataaugmentation.Thistechniqueconsistsinincreasingthesizeoftheoriginaldatasetinordertoachievehigherlevelsofgeneralizationandtoimprovetheperformanceofthenetwork[

38]

.

(2)Architectureconfigurationparameters.Theseparametersconstitutethecomposition

ofonearchitectureoranother,andtheseinclude:

.Typeoflayer.Thearchitecturescanstackdifferentsetsoflayersineachbranch:FC,Convolutional,RNN,Concatenated,etc.

.Layersettings.Eachlayerhasspecificconfigurations,forexample,convolutionallayerscanbeconfiguredwithdifferenttypesoffilters,33,55,...,kk,theirdepthornumberoflayers.

.Layerdistribution.Thearchitecturescanconsistofasinglebranch,canbebranchedattheinput,orattheoutputorboth.

(3)Hyperparameters.Theseparametersarecharacteristicofthelearningprocessimplicit

inDNN,andamongthemare:

.Batchsize.Numberofsamplesthatwillbepassedthroughthenetworkbeforeupdatingtheweights.

.NumberofEpochs.Numberoftimesthelearningalgorithmwillworkwiththetrainingdataset.

.OptimizationAlgorithm.Themostwidelyusedisthegradientdescentalgorithm.However,variationshavebeendeveloped,suchasAdaGradwhichadjuststhelearningrate.AnothervariantisAdam,withadaptivemomentum.

.Learningrate.Theoptimizationalgorithmallowshowmuchtheweightsareupdatedattheendofeachbatchtobecontrolled.

.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论