专题25 几何探究以四边形的性质为背景(动点、平移、旋转、折叠)(解析版)_第1页
专题25 几何探究以四边形的性质为背景(动点、平移、旋转、折叠)(解析版)_第2页
专题25 几何探究以四边形的性质为背景(动点、平移、旋转、折叠)(解析版)_第3页
专题25 几何探究以四边形的性质为背景(动点、平移、旋转、折叠)(解析版)_第4页
专题25 几何探究以四边形的性质为背景(动点、平移、旋转、折叠)(解析版)_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题25几何探究以四边形的性质为背景(动点、平移、旋转、折叠)1.(2023·内蒙古通辽·统考中考真题)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片,使与重合,得到折痕,把纸片展平;操作二:在上选一点P,沿折叠,使点A落在正方形内部点M处,把纸片展平,连接、,延长交于点Q,连接.

(1)如图1,当点M在上时,___________度;(2)改变点P在上的位置(点P不与点A,D重合)如图2,判断与的数量关系,并说明理由.【答案】(1)30(2),理由见解析【分析】(1)由正方形的性质结合折叠的性质可得出,,进而可求出,即得出;(2)由正方形的性质结合折叠的性质可证,即得出.【详解】(1)解:∵对折正方形纸片,使与重合,得到折痕,∴,.∵在上选一点P,沿折叠,使点A落在正方形内部点M处,∴.在中,,∴.故答案为:.(2)解:结论:,理由如下:∵四边形是正方形,,.由折叠可得:,,,.又,,∴.【点睛】本题主要考查正方形的性质、折叠的性质、解直角三角形、三角形全等的判定和性质、勾股定理等知识点.熟练掌握上述知识并利用数形结合的思想是解题关键.2.(2023·浙江绍兴·统考中考真题)在平行四边形中(顶点按逆时针方向排列),为锐角,且.

(1)如图1,求边上的高的长.(2)是边上的一动点,点同时绕点按逆时针方向旋转得点.①如图2,当点落在射线上时,求的长.②当是直角三角形时,求的长.【答案】(1)8(2)①;②或【分析】(1)利用正弦的定义即可求得答案;(2)①先证明,再证明,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:为直角顶点;第二种:为直角顶点;第三种,为直角顶点,但此种情况不成立,故最终有两个答案.【详解】(1)在中,,在中,.(2)①如图1,作于点,由(1)得,,则,作交延长线于点,则,

∴.∵∴.由旋转知,∴.设,则.∵,∴,∴,∴,即,∴,∴.②由旋转得,,又因为,所以.情况一:当以为直角顶点时,如图2.

∵,∴落在线段延长线上.∵,∴,由(1)知,,∴.情况二:当以为直角顶点时,如图3.

设与射线的交点为,作于点.∵,∴,∵,∴,∴.又∵,∴,∴.设,则,∴∵,∴,∴,∴,∴,化简得,解得,∴.情况三:当以为直角顶点时,点落在的延长线上,不符合题意.综上所述,或.【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.3.(2023·湖南·统考中考真题)(1)[问题探究]如图1,在正方形中,对角线相交于点O.在线段上任取一点P(端点除外),连接.

①求证:;②将线段绕点P逆时针旋转,使点D落在的延长线上的点Q处.当点P在线段上的位置发生变化时,的大小是否发生变化?请说明理由;③探究与的数量关系,并说明理由.(2)[迁移探究]如图2,将正方形换成菱形,且,其他条件不变.试探究与的数量关系,并说明理由.

【答案】(1)①见解析;②不变化,,理由见解析;③,理由见解析(2),理由见解析【分析】(1)①根据正方形的性质证明,即可得到结论;②作,垂足分别为点M、N,如图,可得,证明四边形是矩形,推出,证明,得出,进而可得结论;③作交于点E,作于点F,如图,证明,即可得出结论;(2)先证明,作交于点E,交于点G,如图,则四边形是平行四边形,可得,都是等边三角形,进一步即可证得结论.【详解】(1)①证明:∵四边形是正方形,∴,∵,∴,∴;②的大小不发生变化,;证明:作,垂足分别为点M、N,如图,

∵四边形是正方形,∴,,∴四边形是矩形,,∴,∵,∴,∴,∵,∴,即;③;证明:作交于点E,作于点F,如图,

∵四边形是正方形,∴,,∴,四边形是矩形,∴,∴,∵,,∴,作于点M,则,∴,∵,∴,∴;(2);证明:∵四边形是菱形,,∴,∴是等边三角形,垂直平分,∴,∵,∴,作交于点E,交于点G,如图,则四边形是平行四边形,,,∴,都是等边三角形,∴,

作于点M,则,∴,∴.【点睛】本题是四边形综合题,主要考查了正方形、菱形的性质,矩形、平行四边形、等边三角形的判定和性质,全等三角形的判定和性质以及解直角三角形等知识,熟练掌握相关图形的判定和性质、正确添加辅助线是解题的关键.4.(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图①,把一个含有角的三角尺放在正方形中,使角的顶点始终与正方形的顶点重合,绕点旋转三角尺时,角的两边,始终与正方形的边,所在直线分别相交于点,,连接,可得.

【探究一】如图②,把绕点C逆时针旋转得到,同时得到点在直线上.求证:;【探究二】在图②中,连接,分别交,于点,.求证:;【探究三】把三角尺旋转到如图③所示位置,直线与三角尺角两边,分别交于点,.连接交于点,求的值.【答案】[探究一]见解析;[探究二]见解析;[探究三]【分析】[探究一]证明,即可得证;[探究二]根据正方形的性质证明,根据三角形内角和得出,加上公共角,进而即可证明[探究三]先证明,得出,,将绕点顺时针旋转得到,则点在直线上.得出,根据全等三角形的性质得出,进而可得,证明,根据相似三角形的性质得出,即可得出结论.【详解】[探究一]∵把绕点C逆时针旋转得到,同时得到点在直线上,∴,∴,∴,在与中∴∴[探究二]证明:如图所示,

∵四边形是正方形,∴,又,∴,∵,∴,又∵,∴,又∵公共角,∴;[探究三]证明:∵是正方形的对角线,∴,,∴,∵,∴,即,∴,∴,,如图所示,将绕点顺时针旋转得到,则点在直线上.

∴,,∴,又,∴,∴,∵,∴,又,∴,∴,即.【点睛】本题考查了全等三角形的性质与判定,旋转的性质,正方形的性质,相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.5.(2023·湖南·统考中考真题)问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形的边上任意取一点G,以为边长向外作正方形,将正方形绕点B顺时针旋转.

特例感知:(1)当在上时,连接相交于点P,小红发现点P恰为的中点,如图①.针对小红发现的结论,请给出证明;(2)小红继续连接,并延长与相交,发现交点恰好也是中点P,如图②,根据小红发现的结论,请判断的形状,并说明理由;规律探究:(3)如图③,将正方形绕点B顺时针旋转,连接,点P是中点,连接,,,的形状是否发生改变?请说明理由.【答案】(1)见解析;(2)是等腰直角三角形,理由见解析;(3)的形状不改变,见解析【分析】(1)连接,,,根据正方形的性质求出,证明,推出,再利用余角的性质求出,推出即可;(2)根据正方形的性质直接得到,推出,得到是等腰直角三角形;(3)延长至点M,使,连接,证明,得到,推出,设交于点H,交于点N,得到,由得到,推出,进而得到,再证明,得到,,证得,再由,根据等腰三角形的三线合一的性质求出,即可证得是等腰直角三角形.【详解】(1)证明:连接,,,如图,

∵四边形,都是正方形,∴,∴,∵四边形是正方形,∴,又∵,∴,∴,∴,∵,∴,∴,∴,即点P恰为的中点;(2)是等腰直角三角形,理由如下:∵四边形,都是正方形,∴∴,∴是等腰直角三角形;(3)的形状不改变,延长至点M,使,连接,

∵四边形、四边形都是正方形,∴,,∵点P为的中点,∴,∵,∴,∴,∴,,∴,设交于点H,交于点N,∴,∵,∴,∵,∴,∵,∴,又∵,∴,∴,,∵,∴,即,∵,∴,即,∴,∴,∴,∴是等腰直角三角形.【点睛】此题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质等,(3)中作辅助线利用中点构造全等三角形是解题的难点,熟练掌握各性质和判定定理是解题的关键.6.(2023·天津·统考中考真题)在平面直角坐标系中,O为原点,菱形的顶点,矩形的顶点.(1)填空:如图①,点C的坐标为________,点G的坐标为________;(2)将矩形沿水平方向向右平移,得到矩形,点E,F,G,H的对应点分别为,,,.设,矩形与菱形重叠部分的面积为S.

①如图②,当边与相交于点M、边与相交于点N,且矩形与菱形重叠部分为五边形时,试用含有t的式子表示S,并直接写出t的取值范围:②当时,求S的取值范围(直接写出结果即可).【答案】(1),(2)①;②【分析】(1)根据矩形及菱形的性质可进行求解;(2)①由题意易得,然后可得,则有,进而根据割补法可进行求解面积S;②由①及题意可知当时,矩形和菱形重叠部分的面积是增大的,当时,矩形和菱形重叠部分的面积是减小的,然后根据题意画出图形计算面积的最大值和最小值即可.【详解】(1)解:∵四边形是矩形,且,∴,∴;连接,交于一点H,如图所示:

∵四边形是菱形,且,∴,,∴,∴,故答案为,;(2)解:①∵点,点,点,∴矩形中,轴,轴,.∴矩形中,轴,轴,.由点,点,得.在中,,得.在中,由,得.∴.同理,得.∵,得.又,∴,当时,则矩形和菱形重叠部分为,∴的取值范围是.②由①及题意可知当时,矩形和菱形重叠部分的面积是增大的,当时,矩形和菱形重叠部分的面积是减小的,∴当时,矩形和菱形重叠部分如图所示:

此时面积S最大,最大值为;当时,矩形和菱形重叠部分如图所示:

由(1)可知B、D之间的水平距离为,则有点D到的距离为,由①可知:,∴矩形和菱形重叠部分为等边三角形,∴该等边三角形的边长为,∴此时面积S最小,最小值为;综上所述:当时,则.【点睛】本题主要考查矩形、菱形的性质及三角函数、图形与坐标,熟练掌握矩形、菱形的性质及三角函数、图形与坐标是解题的关键.7.(2023·广东·统考中考真题)综合探究如图1,在矩形中,对角线相交于点,点关于的对称点为,连接交于点,连接.

(1)求证:;(2)以点为圆心,为半径作圆.①如图2,与相切,求证:;②如图3,与相切,,求的面积.【答案】(1)见解析(2)①见解析;②【分析】(1)由点关于的对称点为可知点E是的中点,,从而得到是的中位线,继而得到,从而证明;(2)①过点O作于点F,延长交于点G,先证明得到,由与相切,得到,继而得到,从而证明是的角平分线,即,,求得,利用直角三角形两锐角互余得到,从而得到,即,最后利用含度角的直角三角形的性质得出;②先证明四边形是正方形,得到,再利用是的中位线得到,从而得到,,再利用平行线的性质得到,从而证明是等腰直角三角形,,设,求得,在中,即,解得,从而得到的面积为.【详解】(1)∵点关于的对称点为,∴点E是的中点,,又∵四边形是矩形,∴O是的中点,∴是的中位线,∴∴,∴(2)①过点O作于点F,延长交于点G,则,

∵四边形是矩形,∴,,∴,.∵,,,∴,∴.∵与相切,为半径,,∴,∴又∵即,,∴是的角平分线,即,设,则,又∵∴∴又∵,即是直角三角形,∴,即解得:,∴,即,在中,,,∴,∴;②过点O作于点H,

∵与相切,∴,∵∴四边形是矩形,又∵,∴四边形是正方形,∴,又∵是的中位线,∴∴∴又∵,∴又∵,∴又∵,∴是等腰直角三角形,,设,则∴在中,,即∴∴的面积为:【点睛】本题考查矩形的性质,圆的切线的性质,含度角的直角三角形的性质,等腰直角三角形的性质与判定,中位线的性质定理,角平分线的判定定理等知识,掌握相关知识并正确作出辅助线是解题的关键.8.(2022·广东省深圳市)(1)发现:如图①所示,在正方形ABCD中,E为AD边上一点,将△AEB沿BE翻折到△BEF处,延长EF交CD边于G点.求证:△BFG≌△BCG;

(2)探究:如图②,在矩形ABCD中,E为AD边上一点,且AD=8,AB=6.将△AEB沿BE翻折到△BEF处,延长EF交BC边于G点,延长BF交CD边于点H,且FH=CH,求AE的长.

(3)拓展:如图③,在菱形ABCD中,AB=6,E为CD边上的三等分点,∠D=60°.将△ADE沿AE翻折得到△AFE,直线EF交BC于点P,求PC的长.

【解析】(1)证明:∵将△AEB沿BE翻折到△BEF处,四边形ABCD是正方形,

∴AB=BF,∠BFE=∠A=90°,

∴∠BFG=90°=∠C,

∵AB=BC=BF,BG=BG,

∴Rt△BFG≌Rt△BCG(HL);

(2)解:延长BH,AD交于Q,如图:

设FH=HC=x,

在Rt△BCH中,BC2+CH2=BH2,

∴82+x2=(6+x)2,

解得x=73,

∴DH=DC-HC=113,

∵∠BFG=∠BCH=90°,∠HBC=∠FBG,

∴△BFG∽△BCH,

∴BFBC=BGBH=FGHC,即68=BG6+73=FG73,

∴BG=254,FG=74,

∵EQ//GB,DQ//CB,

∴△EFQ∽△GFB,△DHQ∽△CHB,

∴BCDQ=CHDH,即8DQ=736-73,

∴DQ=887,

设AE=EF=m,则DE=8-m,

∴EQ=DE+DQ=8-m+887=1447-m,

∵△EFQ∽△GFB,

∴EQBG=EFFG,即1447-m254=m74,

解得m=92,

∴AE的长为92;

(3)解:(Ⅰ)当DE=13DC=2时,延长FE交AD于Q,过Q作QH⊥CD于H,如图:

设DQ=x,QE=y,则AQ=6-x,

∵CP//DQ,

∴△CPE∽△QDE,

∴CPDQ=CEDE=2,

∴CP=2x,

∵△ADE沿AE翻折得到△AFE,

∴EF=DE=2,AF=AD=6,∠QAE=∠FAE,9.(2022·重庆市B卷)在△ABC中,∠BAC=90°,AB=AC=22,D为BC的中点,E,F分别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.

(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;

(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=2AE;

(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B'EH,连接B'G,直接写出线段B'G【解析】(1)解:如图1,连接CP,

由旋转知,CF=CG,∠FCG=90°,

∴△FCG为等腰直角三角形,

∵点P是FG的中点,

∴CP⊥FG,

∵点D是BC的中点,

∴DP=12BC,

在Rt△ABC中,AB=AC=22,

∴BC=2AB=4,

∴DP=2;

(2)证明:如图2,

过点E作EH⊥AE交AD的延长线于H,

∴∠AEH=90°,

由旋转知,EG=EF,∠FEG=90°,

∴∠FEG=∠AEH,

∴∠AEG=∠HEF,

∵AB=AC,点D是BC的中点,

∴∠BAD=∠CAD=12∠BAC=45°,

∴∠H=90°-∠CAD=45°=∠CAD,

∴AE=HE,

∴△EGA≌△EFH(SAS),

∴AG=FH,∠EAG=∠H=45°,

∴∠EAG=∠BAD=45°,

∵∠AMF=180°-∠BAD-∠AFM=135°-∠AFM,

∵∠AFM=∠EFH,

∴∠AMF=135°-∠EFH,

∵∠HEF=180°-∠EFH-∠H=135°-∠EFH,

∴∠AMF=∠HEF,

∵△EGA≌△EFH,

∴∠AEG=∠HEF,

∵∠AGN=∠AEG,

∴∠AGN=∠HEF,

∴∠AGN=∠AMF,

∵GN=MF,

∴△AGN≌△AMF(AAS),

∴AG=AM,

∵AG=FH,

∴AM=FH,

∴AF+AM=AF+FH=AH=2AE;

(3)解:∵点E是AC的中点,

∴AE=12AC=2,

根据勾股定理得,BE=AE2+AB2=10,

由折叠直,BE=B'E=10,

∴点B'是以点E为圆心,10为半径的圆上,

由旋转知,EF=EG,

∴点G是以点E为圆心,EG为半径的圆上,

∴B'G的最小值为B'E-EG,

要B'G最小,则EG最大,即EF最大,

∵点10.(2021·四川省达州市)某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:

【观察与猜想】

(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则DECF的值为______;

(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则CEBD的值为______;

【类比探究】

(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE⋅AB=CF⋅AD;

【拓展延伸】

(4)如图4,在Rt△ABD中,∠BAD=90°,AD=9,tan∠ADB=13,将△ABD沿BD翻折,点A落在点C处得△CBD,点E,F分别在边AB,AD上,连接DE,CF,DE⊥CF.

①求DECF的值;

②连接BF【解析】解:(1)如图1,设DE与CF交于点G,

∵四边形ABCD是正方形,

∴∠A=∠FDC=90°,AD=CD,

∵DE⊥CF,

∴∠DGF=90°,

∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,

∴∠CFD=∠AED,

在△AED和△DFC中,

∠A=∠FDC∠CFD=∠AEDAD=CD,

∴△AED≌△DFC(AAS),

∴DE=CF,

∴DECF=1;

(2)如图2,设DB与CE交于点G,

∵四边形ABCD是矩形,

∴∠A=∠EDC=90°,

∵CE⊥BD,

∴∠DGC=90°,

∴∠CDG+∠ECD=90°,∠ADB+∠CDG=90°,

∴∠ECD=∠ADB,

∵∠CDE=∠A,

∴△DEC∽△ABD,

∴CEBD=DCAD=47,

故答案为:47.

(3)证明:如图3,过点C作CH⊥AF交AF的延长线于点H,

∵CG⊥EG,

∴∠G=∠H=∠A=∠B=90°,

∴四边形ABCH为矩形,

∴AB=CH,∠FCH+∠CFH=∠DFG+∠FDG=90°,

∴∠FCH=∠FDG=∠ADE,∠A=∠H=90°,

∴△DEA∽△CFH,

∴DECF=ADCH,

∴DECF=ADAB,

∴DE⋅AB=CF⋅AD;

(4)①如图4,过点C作CG⊥AD于点G,连接AC交BD于点H,CG与DE相交于点O,

∵CF⊥DE,GC⊥AD,

∴∠FCG+∠CFG=∠CFG+∠ADE=90°,

∴∠FCG=∠ADE,∠BAD=∠CGF=90°,

∴△DEA∽△CFG,

∴DECF=ADCG,

在Rt△ABD中,tan∠ADB=13,AD=9,

∴AB=3,

在Rt△ADH中,tan∠ADH=13,

∴AHDH=13,

设AH=a,则DH=3a,

∵AH2+DH2=AD2,

∴a2+(3a)2=92,

∴a=91011.(2021·湖北省荆州市)在矩形ABCD中,AB=2,AD=4,F是对角线AC上不与点A,C重合的一点,过F作FE⊥AD于E,将△AEF沿EF翻折得到△GEF,点G在射线AD上,连接CG.

(1)如图1,若点A的对称点G落在AD上,∠FGC=90°,延长GF交AB于H,连接CH.

①求证:△CDG∽△GAH;

②求tan∠GHC.

(2)如图2,若点A的对称点G落在AD延长线上,∠GCF=90°,判断△GCF与△AEF是否全等,并说明理由.

【答案】(1)如图1,

①证明:∵四边形ABCD是矩形,

∴∠D=∠GAH=90°,

∴∠DCG+∠DGC=90°,

∵∠FGC=90°,

∴∠AGH+∠DGC=90°,

∴∠DCG=∠AGH,

∴△CDG∽△GAH.

②由翻折得∠EGF=∠EAF,

∴∠AGH=∠DAC=∠DCG,

∵CD=AB=2,AD=4,

∴DGCD=AHAG=CDAD=tan∠DAC=24=12,

∴DG=12CD=12×2=1,

∴GA=4-1=3,

∵△CDG∽△GAH,

∴CGGH=CDGA,

∴tan∠GHC=CGGH=CDGA=23.

(2)不全等,理由如下:

∵AD=4,CD=2,

∴AC=42+12.(2021·黑龙江省齐齐哈尔市)综合与实践

数学实践活动,是一种非常有效的学习方式,通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思维空间,丰富数学体验,让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.

折一折:将正方形纸片ABCD折叠,使边AB、AD都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1.

(1)∠EAF=______°,写出图中两个等腰三角形:______(不需要添加字母);

转一转:将图1中的∠EAF绕点A旋转,使它的两边分别交边BC、CD于点P、Q,连接PQ,如图2.

(2)线段BP、PQ、DQ之间的数量关系为______;

(3)连接正方形对角线BD,若图2中的∠PAQ的边AP、AQ分别交对角线BD于点M、点N,如图3,则CQBM=______;

剪一剪:将图3中的正方形纸片沿对角线BD剪开,如图4.

(4)求证:BM2【答案】(1)解:如图1中,

∵四边形ABCD是正方形,

∴AB=AD=BC=CD,∠BAD=90°,

∴ABC,△ADC都是等腰三角形,

∵∠BAE=∠CAE,∠DAF=∠CAF,

∴∠EAF=12(∠BAC+∠DAC)=45°,

∵∠BAE=∠DAF=22.5°,∠B=∠D=90°,AB=AD,

∴△BAE≌△DAF(ASA),

∴BE=DF,AE=AF,

∵CB=CD,

∴CE=CF,

∴△AEF,△CEF都是等腰三角形,

故答案为:45;△AEF,△EFC,△ABC,△ADC(任写2个即可).

(2)解:结论:PQ=BP+DQ.

理由:如图2中,延长CB到T,使得BT=DQ.

∵AD=AB,∠ADQ=∠ABT=90°,DQ=BT,

∴△ADQ≌△ABT(SAS),

∴AT=AQ,∠DAQ=∠BAT,

∵∠PAQ=45°,

∴∠PAT=∠BAP+∠BAT=∠BAP+∠DAQ=45°,

∴∠PAT=∠PAQ=45°,

∵AP=AP,

∴△PAT≌△PAQ(SAS),

∴PQ=PT,

∵PT=PB+BT=PB+DQ,

∴PQ=BP+DQ.

故答案为:PQ=BP+DQ.

(3)解:如图3中,

∵四边形ABCD是正方形,

∴∠ABM=∠ACQ=∠BAC=45°,AC=2AB,

∵∠BAC=∠PAQ=45°,

∴∠BAM=∠CAQ,

∴△CAQ∽△BAM,

∴CQBM=ACAB=2,

故答案为:2.

(4)证明:如图4中,将△ADN绕点A顺时针旋转90°得到△ABR,连接RM.

∵∠BAD=90°,∠MAN=45°,

∴∠DAN+∠BAM=45°,

∵∠DAN=∠BAR,

∴∠BAM+∠BAR=45°,

∴∠MAR=∠MAN=45°,

∵AR=AN,AM=AM,

∴△AMR≌△AMN(SAS),

∴RM=MN,

∵∠D=∠ABR=∠ABD=45°,

∴∠RBM=90°,

∴R13.(2020·湖北省宜昌市)菱形ABCD的对角线AC,BD相交于点O,0°<∠ABO≤60°,点G是射线OD上一个动点,过点G作GE//DC交射线OC于点E,以OE,OG为邻边作矩形EOGF.

(1)如图1,当点F在线段DC上时,求证:DF=FC;

(2)若延长AD与边GF交于点H,将△GDH沿直线AD翻折180°得到△MDH.

①如图2,当点M在EG上时,求证:四边形EOGF为正方形;

②如图3,当tan∠ABO为定值m时,设DG=k⋅DO,k为大于0的常数,当且仅当k>2时,点M在矩形EOGF的外部,求m的值.【答案】证明(1)∵四边形EOGF是矩形,

∴EO//GF,GO//EF,

∵GE//DC,

∴四边形GEFD是平行四边形,四边形GECF是平行四边形,

∴GE=DF,GE=CF,

∴DF=FC;

(2)①如图1,由折叠的性质知,∠GDH=∠MDH,DH⊥GM,

∵GE//CD,

∴∠DGM=∠BDC,

∵四边形ABCD是菱形,

∴∠ADB=∠BDC,∠COD=90°,

∵∠ADB=∠GDH,

∴∠DGM=∠GDH,

∵DH⊥GM,

∴∠DGM=45°,

∴∠OEG=45°,

∴OE=OG,

∵四边形EOGF是矩形,

∴四边形EOGF是正方形;

②如图2,∵四边形ABCD是菱形,

∴∠ABD=∠CBD=∠ADB,

∵GE//CD,

∴∠DGE=∠CDB,

∴∠ABD=∠CBD=∠ADB=∠DGE=∠CDB,

∴∠GDM=2∠ABD,

∵tan∠ABO=m(m为定值),

∴点M始终在固定射线DM上并随k的增大向上运动,

∵当且仅当k>2时,M点在矩形EOGF的外部,

∴k=2时,M点在矩形EOGF上,即点M在EF上,

设OB=b,则,OA=OC=mb,DG=DM=kb=2b,OG=(k+1)b=3b,OE=m(k+1)b=3mb,GH=HM=mkb=2mb,

∴FH=OE-GH=m(k+1)b-mkb=mb,

过点D作DN⊥EF于点N,

∵∠FHM+∠FMH=∠FMH+∠DMN,

∴∠FHM=∠DMN,

∵∠F=∠DNM=90°,

∴△MFH∽△DNM,

∴FHMN=MHDM,

∴mbMN=2mb2b,

∴MN=b,

∵DM2=D14.(2022·四川省成都市)在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.

(1)如图1,若BC=2BA,求∠CBE的度数;

(2)如图2,当AB=5,且AF⋅FD=10时,求BC的长;

(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求ABBC的值.【答案】解:(1)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,

∴BC=BF,∠FBE=∠EBC,

∵BC=2AB,

∴BF=2AB,

∴∠AFB=30°,

∵四边形ABCD是矩形,

∴AD//BC,

∴∠AFB=∠CBF=30°,

∴∠CBE=12∠FBC=15°;

(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,

∴∠BFE=∠C=90°,CE=EF,

又∵矩形ABCD中,∠A=∠D=90°,

∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,

∴∠AFB=∠DEF,

∴△FAB∽△EDF,

∴AFDE=ABDF,

∴AF⋅DF=AB⋅DE,

∵AF⋅DF=10,AB=5,

∴DE=2,

∴CE=DC-DE=5-2=3,

∴EF=3,

∴DF=EF2-DE2=32-22=5,

∴AF=105=25,

∴BC=AD=AF+DF=25+5=35.

(3)过点N作NG⊥BF于点G,

∵NF=AN+FD,

∴NF=12AD=12BC,

∵BC=BF,

∴NF=1215.(2020·四川省资阳市)在矩形ABCD中,点E是对角线AC上一动点,连接DE,过点E作EF⊥DE交AB于点F.

(1)如图1,当DE=DA时,求证:AF=EF;

(2)如图2,点E在运动过程中DEEF的值是否发生变化?请说明理由;

(3)如图3,若点F为AB的中点,连接DF交AC于点G,将△GEF沿EF翻折得到△HEF,连接DH交EF于点K,当AD=2,CD=23时,求KH的长.【答案】(1)证明:如图,连接DF,在矩形ABCD中,∠DAF=90°,

又∵DE⊥EF,

∴∠DEF=90°,

∵AD=DE,DF=DF,

∴Rt△DAF≌Rt△DEF(HL),

∴AF=EF;

(2)解:DEEF的值不变;

如图,过点E作EM⊥AD于点M,过点E作EN⊥AB于点N,

∴四边形ANEM是矩形,

∴EN=AM,

∵∠EAM=∠CAD,∠EMA=∠CDA.

∴△EAM∽△CAD,

∴AMAD=EMCD,即EMEN=CDAD①,

∵∠DEF=∠MEN=90°,

∴∠DEM=∠FEN,

又∵∠DME=∠ENF=90°,

∴△DME∽△FNE,

∴DEEF=EMEN②,

由①②可得DEEF=DCAD,

∵AD与DC的长度不变,

∴DEEF的长度不变;

(3)连接GH交EF于点I,

∵点F是AB的中点,

∴AF=3,

在Rt△ADF中,DF=DA2+AF2=22+(3)2=7,

由(2)知DEEF=DCAD=232=3,

∴DE=3EF,

在Rt△DEF中,EF=72,DE=212,

又∵AB//DC,

16.(2021·浙江绍兴市·中考真题)问题:如图,在中,,,,的平分线AE,BF分别与直线CD交于点E,F,求EF的长.答案:.探究:(1)把“问题”中的条件“”去掉,其余条件不变.①当点E与点F重合时,求AB的长;②当点E与点C重合时,求EF的长.(2)把“问题”中的条件“,”去掉,其余条件不变,当点C,D,E,F相邻两点间的距离相等时,求的值.【答案】(1)①10;②5;(2),,【分析】(1)①利用平行四边形的性质和角平分线的定义先分别求出,,即可完成求解;

②证明出即可完成求解;

(2)本小题由于E、F点的位置不确定,故应先分情况讨论,再根据每种情况,利用,以及点C,D,E,F相邻两点间的距离相等建立相等关系求解即可.【详解】(1)①如图1,四边形ABCD是平行四边形,,.平分,...同理可得:.点E与点F重合,.

②如图2,点E与点C重合,同理可证,∴▱ABCD是菱形,,点F与点D重合,.(2)情况1,如图3,可得,.情况2,如图4,同理可得,,又,.情况3,如图5,由上,同理可以得到,又,.综上:的值可以是,,.【点睛】本题属于探究型应用题,综合考查了平行四边形的性质、角平分线的定义、菱形的判定与性质等内容,解决本题的关键是读懂题意,正确画出图形,建立相等关系求解等,本题综合性较强,要求学生有较强的分析能力,本题涉及到的思想方法有分类讨论和数形结合的思想等.17.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形绕点顺时针旋转,得到矩形[探究1]如图1,当时,点恰好在延长线上.若,求BC的长.

[探究2]如图2,连结,过点作交于点.线段与相等吗?请说明理由.

[探究3]在探究2的条件下,射线分别交,于点,(如图3),,存在一定的数量关系,并加以证明.

【答案】[探究1];[探究2],证明见解析;[探究3],证明见解析【分析】[探究1]设,根据旋转和矩形的性质得出,从而得出,得出比例式,列出方程解方程即可;[探究2]先利用SAS得出,得出,,再结合已知条件得出,即可得出;[探究3]连结,先利用SSS得出,从而证得,再利用两角对应相等得出,得出即可得出结论.【详解】[探究1]如图1,设.∵矩形绕点顺时针旋转得到矩形,∴点,,在同一直线上.∴,,∴.∵,∴.又∵点在延长线上,∴,∴,∴.解得,(不合题意,舍去)∴.[探究2].证明:如图2,连结.∵,∴.∵,,,∴.∴,,∵,,∴,∴.[探究3]关系式为.证明:如图3,连结.∵,,,∴.∴,∵,,∴,∴.在与中,,,∴,∴,∴.∴.【点睛】本题考查了矩形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,解一元二次方程等,解题的关键是灵活运用这些知识解决问题.18.(2021·辽宁本溪市·中考真题)在▱中,,平分,交对角线于点G,交射线于点E,将线段绕点E顺时针旋转得线段.(1)如图1,当时,连接,请直接写出线段和线段的数量关系;(2)如图2,当时,过点B作于点,连接,请写出线段,,之间的数量关系,并说明理由;(3)当时,连接,若,请直接写出与面积的比值.【答案】(1);(2),理由见解析;(3)【分析】(1)延长,交于点,根据已知条件证明即可;(2)连接,过F作交的延长线于点,由,得,在由三边关系利用勾股定理可得;(3)证明,得值,与的面积分别与的面积成比例,可得与面积的比值.【详解】(1)如图,延长,交于点,由题意,将线段绕点E顺时针旋转,四边形是平行四边形四边形是平行四边形平分四边形是菱形是等边三角形,,,四边形是平行四边形=在和中.(2)连接,过F作交的延长线于点四边形是矩形,,,,平分四边形是矩形在和中设则在中即整理得:.(3)如图由(1)可知平分四边形是平行四边形.【点睛】本题考查了轴对称的性质,旋转的性质,三角形全等的性质与判定,三角形相似,勾股定理,锐角三角函数,相似比的概念,平行四边形的性质与判定,菱形的性质与判定,矩形的性质与判定,知识点比较多,熟练掌握以上知识点是解题的关键.19.(2021·湖北宜昌市·中考真题)如图,在矩形中,是边上一点,,,垂足为.将四边形绕点顺时针旋转,得到四边形.所在的直线分别交直线于点,交直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论