版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省三门峡市高考数学四模试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是()A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.2.设等差数列的前n项和为,且,,则()A.9 B.12 C. D.3.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为()A. B. C. D.4.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.140 D.1205.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间110,120内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步.其中正确的个数为()A.4 B.3 C.2 D.16.如果实数满足条件,那么的最大值为()A. B. C. D.7.若为虚数单位,则复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知数列满足,则()A. B. C. D.9.已知全集,集合,,则()A. B. C. D.10.已知集合,则集合真子集的个数为()A.3 B.4 C.7 D.811.若,,,则下列结论正确的是()A. B. C. D.12.已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,,当取得最小值时,函数的解析式为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过圆的圆心且与直线垂直的直线方程为__________.14.已知椭圆的左右焦点分别为,过且斜率为的直线交椭圆于,若三角形的面积等于,则该椭圆的离心率为________.15.已知点是抛物线的焦点,,是该抛物线上的两点,若,则线段中点的纵坐标为__________.16.已知函数,则________;满足的的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C的离心率为且经过点(1)求椭圆C的方程;(2)过点(0,2)的直线l与椭圆C交于不同两点A、B,以OA、OB为邻边的平行四边形OAMB的顶点M在椭圆C上,求直线l的方程.18.(12分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:普查对象类别顺利不顺利合计企事业单位401050个体经营户10050150合计14060200(1)写出选择5个国家综合试点地区采用的抽样方法;(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;(3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82819.(12分)已知的三个内角所对的边分别为,向量,,且.(1)求角的大小;(2)若,求的值20.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)调查组从该样本的城镇居民中按分层抽样抽取出7人,参加一次阅读交流活动,若活动主办方从这7位居民中随机选取2人作交流发言,求被选中的2位居民都是经常阅读居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)在中,角、、所对的边分别为、、,且.(1)求角的大小;(2)若,的面积为,求及的值.22.(10分)的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.2、A【解析】
由,可得以及,而,代入即可得到答案.【详解】设公差为d,则解得,所以.故选:A.【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.3、B【解析】
直接代入检验,排除其中三个即可.【详解】由题意,排除D,,排除A,C.同时B也满足,,,故选:B.【点睛】本题考查由数列的项选择通项公式,解题时可代入检验,利用排除法求解.4、C【解析】
试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.考点:频率分布直方图及其应用.5、C【解析】
利用图形,判断折线图平均分以及线性相关性,成绩的比较,说明正误即可.【详解】①甲同学的成绩折线图具有较好的对称性,最高130分,平均成绩为低于130分,①错误;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间[110,120]内,②正确;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,③正确;④乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故④不正确.故选:C.【点睛】本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题.6、B【解析】
解:当直线过点时,最大,故选B7、D【解析】
根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】
利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.9、B【解析】
直接利用集合的基本运算求解即可.【详解】解:全集,集合,,则,故选:.【点睛】本题考查集合的基本运算,属于基础题.10、C【解析】
解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【详解】解:由,得所以集合的真子集个数为个.故选:C【点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.11、D【解析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.12、A【解析】
先求出平移后的函数解析式,结合图像的对称性和得到A和.【详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据与已知直线垂直关系,设出所求直线方程,将已知圆圆心坐标代入,即可求解.【详解】圆心为,所求直线与直线垂直,设为,圆心代入,可得,所以所求的直线方程为.故答案为:.【点睛】本题考查圆的方程、直线方程求法,注意直线垂直关系的灵活应用,属于基础题.14、【解析】
由题得直线的方程为,代入椭圆方程得:,设点,则有,由,且解出,进而求解出离心率.【详解】由题知,直线的方程为,代入消得:,设点,则有,,而,又,解得:,所以离心率.故答案为:【点睛】本题主要考查了直线与椭圆的位置关系,三角形面积计算与离心率的求解,考查了学生的运算求解能力15、2【解析】
运用抛物线的定义将抛物线上的点到焦点距离等于到准线距离,然后求解结果.【详解】抛物线的标准方程为:,则抛物线的准线方程为,设,,则,所以,则线段中点的纵坐标为.故答案为:【点睛】本题考查了抛物线的定义,由抛物线定义将点到焦点距离转化为点到准线距离,需要熟练掌握定义,并能灵活运用,本题较为基础.16、【解析】
首先由分段函数的解析式代入求值即可得到,分和两种情况讨论可得;【详解】解:因为,所以,∵,∴当时,满足题意,∴;当时,由,解得.综合可知:满足的的取值范围为.故答案为:;.【点睛】本题考查分段函数的性质的应用,分类讨论思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据椭圆的离心率、椭圆上点的坐标以及列方程,由此求得,进而求得椭圆的方程.(2)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理.根据平行四边形的性质以及向量加法的几何意义得到,由此求得点的坐标,将的坐标代入椭圆方程,化简后可求得直线的斜率,由此求得直线的方程.【详解】(1)由椭圆的离心率为,点在椭圆上,所以,且解得,所以椭圆的方程为.(2)显然直线的斜率存在,设直线的斜率为,则直线的方程为,设,由消去得,所以,由已知得,所以,由于点都在椭圆上,所以,展开有,又,所以,经检验满足,故直线的方程为.【点睛】本小题主要考查根据椭圆的离心率和椭圆上一点的坐标求椭圆方程,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.18、(1)分层抽样,简单随机抽样(抽签亦可)(2)有(3)分布列见解析,【解析】
(1)根据题意可以选用分层抽样法,或者简单随机抽样法.(2)由已知条件代入公式计算出结果,进而可以得到结果.(3)由已知条件计算出的分布列,进而求出的数学期望.【详解】(1)分层抽样,简单随机抽样(抽签亦可).(2)将列联表中的数据代入公式计算得所以有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”.(3)以频率作为概率,随机选择1家个体经营户作为普查对象,入户登记顺利的概率为.可取0,1,2,3,计算可得的分布列为:0123【点睛】本题考查了运用数学模型解答实际生活问题,运用合理的抽样方法,计算以及数据的分布列和数学期望,需要正确运用公式进行求解,本题属于常考题型,需要掌握解题方法.19、(1)(2)【解析】
利用平面向量数量积的坐标表示和二倍角的余弦公式得到关于的方程,解方程即可求解;由知,在中利用余弦定理得到关于的方程,与方程联立求出,进而求出,利用两角差的正弦公式求解即可.【详解】由题意得,,由二倍角的余弦公式可得,,又因为,所以,解得或,∵,∴.在中,由余弦定理得,即①又因为,把代入①整理得,,解得,,所以为等边三角形,,∴,即.【点睛】本题考查利用平面向量数量积的坐标表示和余弦定理及二倍角的余弦公式解三角形;熟练掌握余弦的二倍角公式和余弦定理是求解本题的关键;属于中档题、常考题型.20、(1)见解析,有99%的把握认为经常阅读与居民居住地有关.(2)【解析】
(1)根据题中数据得到列联表,然后计算出,与临界值表中的数据对照后可得结论;(2)由题意得概率为古典概型,根据古典概型概率公式计算可得所求.【详解】(1)由题意可得:城镇居民农村居民合计经常阅读10030130不经常阅读403070合计14060200则,所以有99%的把握认为经常阅读与居民居住地有关.(2)在城镇居
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘肃2025年甘肃西北师范大学旅游学院诚聘海内外高层次人才笔试历年参考题库附带答案详解
- 2025年度装配式建筑土建清工承包合同示范文本6篇
- 漯河2024年河南漯河市发展和改革委员会所属事业单位招聘3人笔试历年参考题库附带答案详解
- 湖州浙江湖州长兴县综合行政执法局长兴人事人才网招聘辅助执法人员8人笔试历年参考题库附带答案详解
- 泉州2025年福建泉州师范学院面向具有突出贡献运动员招聘体育教师笔试历年参考题库附带答案详解
- 成都四川成都市双流区黄龙溪学校招聘体育教师笔试历年参考题库附带答案详解
- 廊坊2025年河北廊坊香河县选聘教师100人笔试历年参考题库附带答案详解
- 2025年湖南娄底市涟源市国家粮食储备有限责任公司招聘笔试参考题库附带答案详解
- 2025年湖北黄冈市浠水县城市发展投资集团有限公司招聘笔试参考题库附带答案详解
- 2025年广西桂林市雁山区事业单位直接招聘7人历年高频重点提升(共500题)附带答案详解
- 专题6.8 一次函数章末测试卷(拔尖卷)(学生版)八年级数学上册举一反三系列(苏科版)
- GB/T 4167-2024砝码
- 老年人视觉障碍护理
- 《脑梗塞的健康教育》课件
- 《请柬及邀请函》课件
- 辽宁省普通高中2024-2025学年高一上学期12月联合考试语文试题(含答案)
- 《个体防护装备安全管理规范AQ 6111-2023》知识培训
- 青海原子城的课程设计
- 2023年年北京市各区初三语文一模分类试题汇编 - 作文
- 常州大学《新媒体文案创作与传播》2023-2024学年第一学期期末试卷
- 麻醉苏醒期躁动患者护理
评论
0/150
提交评论