![福建省龙岩市上杭三中学2023-2024学年中考数学最后一模试卷含解析_第1页](http://file4.renrendoc.com/view4/M02/2F/23/wKhkGGY4ypWANoyiAAH-LXc6K-4912.jpg)
![福建省龙岩市上杭三中学2023-2024学年中考数学最后一模试卷含解析_第2页](http://file4.renrendoc.com/view4/M02/2F/23/wKhkGGY4ypWANoyiAAH-LXc6K-49122.jpg)
![福建省龙岩市上杭三中学2023-2024学年中考数学最后一模试卷含解析_第3页](http://file4.renrendoc.com/view4/M02/2F/23/wKhkGGY4ypWANoyiAAH-LXc6K-49123.jpg)
![福建省龙岩市上杭三中学2023-2024学年中考数学最后一模试卷含解析_第4页](http://file4.renrendoc.com/view4/M02/2F/23/wKhkGGY4ypWANoyiAAH-LXc6K-49124.jpg)
![福建省龙岩市上杭三中学2023-2024学年中考数学最后一模试卷含解析_第5页](http://file4.renrendoc.com/view4/M02/2F/23/wKhkGGY4ypWANoyiAAH-LXc6K-49125.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省龙岩市上杭三中学2023-2024学年中考数学最后一模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是()A. B. C. D.2.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨3.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180° B.减小(n﹣2)×180°C.增加(n﹣1)×180° D.没有改变4.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是()A.点A落在BC边的中点 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC5.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30° B.40° C.50° D.60°6.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A. B. C. D.7.计算(﹣3)﹣(﹣6)的结果等于()A.3B.﹣3C.9D.188.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B.C. D.9.若正六边形的边长为6,则其外接圆半径为()A.3 B.3 C.3 D.610.下列交通标志是中心对称图形的为()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.不等式组的整数解是_____.12.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.13.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.14.小红沿坡比为1:的斜坡上走了100米,则她实际上升了_____米.15.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.16..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是_______.三、解答题(共8题,共72分)17.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)18.(8分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x19.(8分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.20.(8分)计算:(1-n)0-|3-2|+(-)-1+4cos30°.21.(8分)如图,在△ABC中,AB=AC=4,∠A=36°.在AC边上确定点D,使得△ABD与△BCD都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)22.(10分)如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.23.(12分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值.24.如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.判断直线DE与⊙O的位置关系,并说明理由.若⊙O的半径R=5,tanA=,求线段CD的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
利用相似三角形的性质即可判断.【详解】设AD=x,AE=y,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故选:C.【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67500=6.75×2.故选C.3、D【解析】
根据多边形的外角和等于360°,与边数无关即可解答.【详解】∵多边形的外角和等于360°,与边数无关,∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选D.【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.4、A【解析】
根据折叠的性质明确对应关系,易得∠A=∠1,DE是△ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确.【详解】根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A错,BA≠CA.故选A.【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.5、D【解析】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.6、A【解析】
由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.【详解】解:几何体从左到右的最高层数依次为1,2,3,所以主视图从左到右的层数应该为1,2,3,故选A.【点睛】本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.7、A【解析】原式=−3+6=3,故选A8、D【解析】
分a>0和a<0两种情况分类讨论即可确定正确的选项【详解】当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【点睛】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.9、D【解析】
连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【详解】如图为正六边形的外接圆,ABCDEF是正六边形,∴∠AOF=10°,∵OA=OF,∴△AOF是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D.【点睛】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.10、C【解析】
根据中心对称图形的定义即可解答.【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;
B、是中心对称的图形,但不是交通标志,不符合题意;
C、属于轴对称图形,属于中心对称的图形,符合题意;
D、不是中心对称的图形,不合题意.
故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.二、填空题(本大题共6个小题,每小题3分,共18分)11、﹣1、0、1【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.【详解】,解不等式得:,解不等式得:,不等式组的解集为,不等式组的整数解为-1,0,1.故答案为:-1,0,1.【点睛】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.12、51.【解析】∵一组数据:3,a,4,6,7,它们的平均数是5,∴,解得,,∴=1.故答案为5,1.13、2.【解析】
设第n层有an个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“an=2n﹣2”,再代入n=2029即可求出结论.【详解】设第n层有an个三角形(n为正整数),∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,∴an=2(n﹣2)+2=2n﹣2.∴当n=2029时,a2029=2×2029﹣2=2.故答案为2.【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“an=2n﹣2”是解题的关键.14、50【解析】
根据题意设铅直距离为x,则水平距离为,根据勾股定理求出x的值,即可得到结果.【详解】解:设铅直距离为x,则水平距离为,根据题意得:,解得:(负值舍去),则她实际上升了50米,故答案为:50【点睛】本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.15、1.【解析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.详解:∵==,解得:旗杆的高度=×30=1.故答案为1.点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.16、4【解析】
先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为4.【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出OA的长是解本题的关键.三、解答题(共8题,共72分)17、(1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.【解析】
(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:开通隧道前,汽车从A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽车从A地到B地比原来少走的路程为[40+40]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.18、(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣.【解析】
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,x﹣9=0,x+2=0,x1=9,x2=﹣2;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键.19、(8+8)m.【解析】
利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.【详解】在Rt△EBC中,有BE=EC×tan45°=8m,在Rt△AEC中,有AE=EC×tan30°=8m,∴AB=8+8(m).【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.20、1【解析】
根据实数的混合计算,先把各数化简再进行合并.【详解】原式=1+3-2-3+2=1【点睛】此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.21、【解析】
作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长.【详解】如图所示,作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,∵∠A=∠CBD=36°,∠C=∠C,∴△ABC∽△BDC,∴,设BC=BD=AD=x,则CD=4﹣x,∵BC2=AC×CD,∴x2=4×(4﹣x),解得x1=,x2=(舍去),∴BC的长.【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22、(1)(2)证明见解析(3)F在直径BC下方的圆弧上,且【解析】
(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且.【详解】(1)解:∵直线l与以BC为直径的圆O相切于点C.∴∠BCE=90°,又∵BC为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故为60°,∴F在直径BC下方的圆弧上,且.【点睛】考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.23、(1)300米/分;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年阿坝道路货运从业资格证考试
- 2025年地下空间开发项目发展计划
- 口腔执业医师考试口腔颌面外科学模拟试题及答案
- 2024年高中历史第九单元戊戌变法9.3百日维新练习含解析新人教版选修1
- 2024-2025学年高中历史第五单元烽火连绵的局部战争5.7海湾战争课下提升演练新人教版选修3
- 2024-2025学年新教材高中地理课后作业提升十六地质灾害含解析新人教版必修第一册
- 2024-2025学年新教材高中历史第18课挽救民族危亡的斗争学案新人教版必修中外历史纲要上
- 2024-2025年新教材高中化学课时素养评价八活泼的金属单质-钠含解析新人教版必修1
- 2024-2025版新教材高中化学第4章第2节第1课时元素性质的周期性变化规律教案新人教版必修第一册
- 2024-2025学年新教材高中数学第5章统计与概率5.1.1数据的收集课时13简单随机抽样练习含解析新人教B版必修第二册
- 2024年度市政工程项目三方合作协议3篇
- 【大学课件】机电设备管理技术概论
- 2024届广东省广州市高三一模考试英语试题讲评课件
- 切削加工中的刀具路径规划算法考核试卷
- 《推拿学》期末考试复习题库(含答案)
- 《STP营销战略概述》课件
- 2024年经济师考试工商管理(中级)专业知识和实务试卷及解答参考
- 急性胸痛患者的急救护理
- 小红书种草营销师(初级)认证考试真题试题库(含答案)
- 10kV配电室工程施工方案设计
- 2025年中国洗衣凝珠行业市场现状及投资态势分析报告(智研咨询)
评论
0/150
提交评论