




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市末央区重点达标名校2024届中考数学考试模拟冲刺卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是()A.①②③④ B.②④ C.①②③ D.①③④2.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<23.如图所示,在平面直角坐标系中,抛物线y=-x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为().A.3 B. C. D.4.下列计算正确的是()A.﹣= B.=±2C.a6÷a2=a3 D.(﹣a2)3=﹣a65.下列运算正确的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3•x=x46.如图,四边形ABCE内接于⊙O,∠DCE=50°,则∠BOE=()A.100° B.50° C.70° D.130°7.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)8.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A.相离 B.相切 C.相交 D.不确定9.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为()A.40° B.45° C.50° D.55°10.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.12.如图,在2×4的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC的顶点都在格点上,将△ABC绕着点C按顺时针方向旋转一定角度后,得到△A'B'C',点A'、B'在格点上,则点A走过的路径长为_____(结果保留π)13.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为.14.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为___.15.分解因式:__________.16.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8531865279316044005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).三、解答题(共8题,共72分)17.(8分)如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求BODO18.(8分)解不等式组,请结合题意填空,完成本题的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为_____.19.(8分)已知关于x的方程.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.20.(8分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a的值为%,该扇形圆心角的度数为;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?21.(8分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:月份x123456789价格y1(元/件)560580600620640660680700720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.22.(10分)如图,二次函数y=﹣+mx+4﹣m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2,D是抛物线的顶点.(1)求二次函数的表达式;(2)当﹣<x<1时,请求出y的取值范围;(3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.23.(12分)图1和图2中,优弧纸片所在⊙O的半径为2,AB=2,点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.发现:(1)点O到弦AB的距离是,当BP经过点O时,∠ABA′=;(2)当BA′与⊙O相切时,如图2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN剪裁,得到半圆形纸片,点P(不与点M,N重合)为半圆上一点,将圆形沿NP折叠,分别得到点M,O的对称点A′,O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图3,判断A′C与半圆O的位置关系,并说明理由;(2)如图4,当α=°时,NA′与半圆O相切,当α=°时,点O′落在上.(3)当线段NO′与半圆O只有一个公共点N时,直接写出β的取值范围.24.如图,网格的每个小正方形边长均为1,每个小正方形的顶点称为格点.已知和的顶点都在格点上,线段的中点为.(1)以点为旋转中心,分别画出把顺时针旋转,后的,;(2)利用(1)变换后所形成的图案,解答下列问题:①直接写出四边形,四边形的形状;②直接写出的值;③设的三边,,,请证明勾股定理.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;详解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,故选A.点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.2、D【解析】
解:∵直线l1与x轴的交点为A(﹣1,0),∴﹣1k+b=0,∴,解得:.∵直线l1:y=﹣1x+4与直线l1:y=kx+b(k≠0)的交点在第一象限,∴,解得0<k<1.故选D.【点睛】两条直线相交或平行问题;一次函数图象上点的坐标特征.3、A【解析】
连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH=AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH=AP,因为AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=AB=3,所以最小值为3.故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键.4、D【解析】
根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.【详解】A.不是同类二次根式,不能合并,故A选项错误;B.=2≠±2,故B选项错误;C.
a6÷a2=a4≠a3,故C选项错误;D.
(−a2)3=−a6,故D选项正确.故选D.【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.5、D【解析】A.x4+x4=2x4,故错误;B.(x2)3=x6,故错误;C.(x﹣y)2=x2﹣2xy+y2,故错误;D.x3•x=x4,正确,故选D.6、A【解析】
根据圆内接四边形的任意一个外角等于它的内对角求出∠A,根据圆周角定理计算即可.【详解】四边形ABCE内接于⊙O,,由圆周角定理可得,,故选:A.【点睛】本题考查的知识点是圆的内接四边形性质,解题关键是熟记圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).7、D【解析】
首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.【详解】解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),故选D.【点睛】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.8、A【解析】
根据角平分线的性质和点与直线的位置关系解答即可.【详解】解:如图所示;∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,∴以点P为圆心的圆与直线CD相离,故选:A.【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.9、C【解析】
根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=12【详解】∵OB=OC,
∴∠OBC=∠OCB.
又∠OBC=40°,
∴∠OBC=∠OCB=40°,
∴∠BOC=180°-2×40°=100°,
∴∠A=12【点睛】考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.10、D【解析】
利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE=,故答案为.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12、【解析】分析:连接AA′,根据勾股定理求出AC=AC′,及AA′的长,然后根据勾股定理的逆定理得出△ACA′为等腰直角三角形,然后根据弧长公式求解即可.详解:连接AA′,如图所示.∵AC=A′C=,AA′=,∴AC2+A′C2=AA′2,∴△ACA′为等腰直角三角形,∴∠ACA′=90°,∴点A走过的路径长=×2πAC=π.故答案为:π.点睛:本题主要考查了几何变换的类型以及勾股定理及逆定理的运用,弧长公式,解题时注意:在旋转变换下,对应线段相等.解决问题的关键是找出变换的规律,根据弧长公式求解.13、1【解析】
设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.【详解】解:设反比例函数解析式为y=,根据题意得k=3×(﹣4)=﹣2m,解得m=1.故答案为1.考点:反比例函数图象上点的坐标特征.14、【解析】设每只雀、燕的重量各为x两,y两,由题意得:故答案是:或.15、3(m-1)2【解析】试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.故答案为:3(m-1)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).16、1.2【解析】
仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.三、解答题(共8题,共72分)17、3【解析】试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可证△ABO∽△CDO,从而BOCO=ABCD;再在Rt△ABC和Rt△BCD中分别求出解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴BOCO在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=3,∴BOCO18、(1)x>1;(1)x≤1;(3)答案见解析;(4)1<x≤1.【解析】
根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【详解】解:(1)解不等式①,得x>1;(1)解不等式②,得x≤1;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为:1<x≤1.【点睛】本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.19、(1),;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x1,∵该方程的一个根为1,∴.解得.∴a的值为,该方程的另一根为.(2)∵,∴不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2.一元二次方程根根的判别式;3.配方法的应用.20、(1)25,90°;(2)见解析;(3)该市“活动时间不少于5天”的大约有1.【解析】试题分析:(1)根据扇形统计图的特征即可求得的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°;(2)“活动时间为6天”的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.21、(1)y1=20x+540,y2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元.【解析】
(1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;(2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.【详解】(1)利用表格得出函数关系是一次函数关系:设y1=kx+b,∴解得:∴y1=20x+540,利用图象得出函数关系是一次函数关系:设y2=ax+c,∴解得:∴y2=10x+1.(2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),=(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,=﹣2(x﹣4)2+450,(1≤x≤9,且x取整数)∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)=(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),=(x﹣29)2,(10≤x≤12,且x取整数),∵10≤x≤12时,∴当x=10时,w最大=361(万元),∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.【点睛】此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.22、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).【解析】
(1)利用对称轴公式求出m的值,即可确定出解析式;(1)根据x的范围,利用二次函数的增减性确定出y的范围即可;(3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可.【详解】(1)∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,即m=﹣1,则二次函数解析式为y=﹣x1﹣1x+6;(1)当x=﹣时,y=;当x=1时,y=.∵﹣<x<1位于对称轴右侧,y随x的增大而减小,∴<y<;(3)当x=﹣1时,y=8,∴顶点D的坐标是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.∵点A在点B的左侧,∴点A坐标为(﹣6,0).设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11.设E(0,n),则有E′(﹣4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4).【点睛】本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.23、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】
发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定A′C与半圆相切;(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在时,连接MO′,则可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.【详解】发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,∵⊙O的半径为2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵图形沿BP折叠,得到点A的对称点A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的长为2拓展:(1)相切.分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,∵A'C∥MN∴四边形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 景观照明行业跨境出海战略研究报告
- 地理模型行业直播电商战略研究报告
- 26-二乙基苯胺行业直播电商战略研究报告
- 建设工程监理行业跨境出海战略研究报告
- 新型门镜行业跨境出海战略研究报告
- 图文书籍行业跨境出海战略研究报告
- 教育培训出版物零售企业制定与实施新质生产力战略研究报告
- 房屋拆迁赔偿协议书政府二零二五年
- 滑雪屐行业直播电商战略研究报告
- 航运供应链协同效应评估-全面剖析
- 借用品牌合同范本
- 喷洒除草剂安全协议书(2篇)
- 2025年4月自考00015英语二(13000英语专升本)押题及答案
- LTE-V2X系统性能要求及测试规范
- 2025年北森题库测试题及答案
- 中国大唐集团有限公司陆上风电工程标杆造价指标(2023年)
- 2025年美容师初级技能水平测试卷:美容师美容护肤实操技能试题汇编
- 茶馆里的政治:揭秘《茶馆》背后的历史
- 跨学科实践活动5探究土壤酸碱性对植物生长的影响教学设计-2024-2025学年九年级化学鲁教版下册
- 国望液晶数显切纸机安全操作规程
- 《国际跳棋教学》课件
评论
0/150
提交评论