版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
合作中学习学习中创新1
全等三角形复习中考总复习之--2
学习目标:通过概念的复习和典型例题评析,使学生掌握三角形全等的判定、性质及其应用。学习重点:典型例型评析。学习难点:学生综合能力的提高。3
全等三角形的性质:
对应边、对应角相等。
全等三角形的判定:
知识点一般三角形全等的判定:SAS、ASA、AAS、SSS直角三角形全等的判定:
SAS、ASA、AAS、SSS、HL4
三边对应相等的两个三角形全等.(简记:SSS)边边边:5
有两边和它们夹角对应相等的两个三角形全等.(简记:SAS)边角边:6
有两角和它们夹边对应相等的两个三角形全等(简记:ASA)角边角:7
有两角和其中一个角的对边对应相等的两个三角形全等(简记:AAS)角角边:8
有斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).探究反映的规律是:9
三角形全等的识别的方法:SSS:三条边对应相等的两个三角形全等。SAS:有两条边和它们的夹角对应相等的两个三角形全等。ASA:有两个角和它们的夹边对应相等的两个三角形全等。AAS:有两个角和其中一个角的对边对应相等的两个三角形全等。(直角三角形)HL:斜边及一条直角边对应相等的两个直角三角形全等。10
知识点※三角形全等的证题思路:11
小试锋芒:已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC≌ΔDEF∠ACB=∠DEFAB=DEAB=DE、AC=DFABCDEF==DEFABC∠A=∠D(1)若要以“SAS”为依据,还缺条件_____;(2)若要以“ASA”为依据,还缺条件____;
(4)若要以“SSS”为依据,还缺条件_____;(3)若要以“AAS”为依据,还缺条件_____;
(5)若∠B=∠DEF=90°要以“HL”为依据,还缺条件_____AC=DF12
例题选析例1:如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AEB.∠AEB=∠ADCC.BE=CDD.AB=ACB13
例题选析例2:已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2,图中全等的三角形共有()A.1对B.2对C.3对D.4对D14
例3.如图,AM=AN,
BM=BN说明△AMB≌△ANB的理由
解:在△AMB和△ANB中
∴
≌
()AN已知BMABAB△ABM△ABNSSS15
FEDCBA例4.如图,∠B=∠E,AB=EF,BD=EC,那么△ABC与△FED全等吗?为什么?解:全等。∵BD=EC(已知)∴BD-CD=EC-CD。即BC=ED
在△ABC与△FED中∴△ABC≌△FED(SAS)考考你16
巩固练习17
1.如图,∠1=∠2,∠3=∠4
求证:AC=AD证明:∵∠ABD=180-∠3∠ABC=180-∠4而∠3=∠4(已知)∴∠ABD=∠ABC在△ABD和△ABC中∠1=∠2(已知)
AB=AB(公共边)∠ABD=∠ABC(已知)∴△ABD≌△ABC(ASA
)∴AC=AD(全等三角形对应边相等)
123418
2.已知,如图,∠1=∠2,∠C=∠D
求证:AC=AD在△ABD和△ABC中∠1=∠2(已知)∠C=∠D(已知)AB=AB(公共边)∴△ABD≌△ABC(AAS)∴AC=AD(全等三角形对应边相等)证明:1219
3.如图,PA=PB,PC是△PAB的角分线,∠A=55°求:∠B的度数解:∵PC是△
APB的角平分线∴∠APC=
(三角形角平分线意义)在
中∴
≌
(
)
∴∠A=∠B(
)∵∠A=550(已知)∴∠B=∠A=550(等量代换)PABC∠BPC△APC和△BPCPA=PB(已知)∠APC=∠BPCPC=PC(公共边)△APC△BPCSAS全等三角形对应角相等20
4:如图,点A、F、E、C在同一直线上,AF=CE,BE=DF,BE∥DF,求证:AB∥CD。证明:∵AF=CE∴AE=CF又∵BE∥DF∴∠1=∠2又∵BE=DF在△AEB和△CFD中AE=CF,∠1=∠2,
BE=DF∴△AEB≌△CFD∴∠A=∠C∴AB∥CD21
AEFBCD5.已知,如图,A、E、F、C四点在同一直线上,AB⊥BE,CD⊥DF,AB=CD,AE=CF,请问:BF是否等于DE?说明理由。22
例:已知,如图,AB=AC,DB=DC,F是AD的延长线上的一点,试说明:BF=CF.23
扩散一:已知:如图,AB=AC,DB=DC,F是AD延长线上一点,且B,F,C在一条直线上,试说明:F是BC的中点.24
扩散二:已知:如图,AB=AC,DB=DC,F是AD上的一点,试说明:BF=CF.
25
扩散三:已知:如图,AB=AC,DB=DC,F是DA延长线上的一点,试说明:BF=CF.26
扩散四:已知:AB=AC,DB=DC,F是直线AD上一动点(即点F在直线AD上运动),点F在AD上不停的运动.你发现什么规律?请说出,并进行证明.27
扩散五:已知:如图,AB=AC,DB=DC,F是AD延长线上一点,试说明点F到AB,AC的距离相等.
28
扩散六:已知:如图,AB=AC,DB=DC,F是AD上的一点,试说明:点F到AB,AC的距离相等.29
扩散七:已知:如图,AB=AC,DB=DC,F是DA延长线上的一点,试说明:点F到AB,AC的距离相等.30
扩散八:已知:如图,AB=AC,DB=DC,点F在直线AD上运动,那么点F到AB,AC的距离有何关系?请提出你的猜想,并进行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临沂大学《大学物理B》2021-2022学年第一学期期末试卷
- 临沂大学《大学物理(Ⅱ)(上)》2021-2022学年第一学期期末试卷
- 初一数学老师教学计划
- 九年级物理上学期教学计划
- 个人学习计划书
- 执行工作计划模板
- 幼儿园工作计划七-幼儿园保育工作计划
- 材料管理工作总结范文及2024年工作计划
- 2024初二物理教研组工作计划范文
- 农业综合开发办公室某年度工作总结暨某年工作计划
- 人教版五年级数学上册第二单元《位置》(大单元教学设计)
- 货架合同模板共
- 2024年贵州省中考数学试卷附答案
- 幼儿园小班语言课件:《雪花》
- DL-T5475-2013垃圾发电工程建设预算项目划分导则
- 2024-2029年中国计量行业市场发展现状及发展趋势与投资战略研究报告
- 机器学习课件周志华Chap08集成学习
- 第19课资本主义国家的新变化【中职专用】《世界历史》(高教版2023基础模块)
- 个人建筑工程技术职业生涯发展规划报告
- 浣溪沙细雨斜风作晓寒
- 幼儿园小班绘本活动《我的门》课件
评论
0/150
提交评论