版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广安市代市中学2023-2024学年中考数学模拟预测题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54° B.64° C.74° D.26°2.下列运算正确的是()A.a3•a2=a6 B.(a2)3=a5 C.=3 D.2+=23.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b4.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的()A. B.C. D.5.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是66.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是A. B. C. D.7.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:38.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.9.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)10.已知a为整数,且<a<,则a等于A.1 B.2 C.3 D.411.用配方法解下列方程时,配方有错误的是()A.化为 B.化为C.化为 D.化为12.2017上半年,四川货物贸易进出口总值为2098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.0987×103 B.2.0987×1010 C.2.0987×1011 D.2.0987×1012二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.14.在△ABC中,∠C=90°,若tanA=,则sinB=______.15.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为____.16.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.17.2017年7月27日上映的国产电影《战狼2》,风靡全国.剧中“犯我中华者,虽远必诛”鼓舞人心,彰显了祖国的强大实力与影响力,累计票房56.8亿元.将56.8亿元用科学记数法表示为_____元.18.64的立方根是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?20.(6分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.21.(6分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?22.(8分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?23.(8分)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣124.(10分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)25.(10分)解方程组26.(12分)按要求化简:(a﹣1)÷,并选择你喜欢的整数a,b代入求值.小聪计算这一题的过程如下:解:原式=(a﹣1)÷…①=(a﹣1)•…②=…③当a=1,b=1时,原式=…④以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;还有第_____步出错(填序号),原因:_____.请你写出此题的正确解答过程.27.(12分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故选B.【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.2、C【解析】
结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项.【详解】解:A.a3a2=a5,原式计算错误,故本选项错误;B.(a2)3=a6,原式计算错误,故本选项错误;C.=3,原式计算正确,故本选项正确;D.2和不是同类项,不能合并,故本选项错误.故选C.【点睛】本题考查了幂的乘方与积的乘方,实数的运算,同底数幂的乘法,解题的关键是幂的运算法则.3、A【解析】
根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.4、D【解析】
当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.【详解】解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,∴直线经过一、二、四象限,双曲线在二、四象限.故选D.【点睛】本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.5、D【解析】
根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.6、D【解析】
由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.7、D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.考点:正多边形和圆.8、A【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,不是中心对称图形,不合题意.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、C【解析】试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.考点:二次函数的性质.10、B【解析】
直接利用,接近的整数是1,进而得出答案.【详解】∵a为整数,且<a<,∴a=1.故选:.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.11、B【解析】
配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:、,,,,故选项正确.、,,,,故选项错误.、,,,,,故选项正确.、,,,,.故选项正确.故选:.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12、C【解析】将2098.7亿元用科学记数法表示是2.0987×1011,故选:C.点睛:本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成的形式,其中,n是比原整数位数少1的数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、-1【解析】
根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.【详解】解:∵方程3x1-5x+1=0的一个根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.14、【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB=.故答案为:.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.15、6【解析】试题分析:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6故答案为6.16、2【解析】
如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=217、5.68×109【解析】试题解析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.56.8亿故答案为18、4.【解析】
根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元【解析】解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,…2分解方程组得:,∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…4分;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,∴,…6分解得:50≤x≤53,…7分∵x为正整数,∴共有4种进货方案…8分;(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.…10分总利润=50×20+50×30=2500(元)∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.…12分20、(1)y=﹣x2+2x+1;(2)P(,);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【解析】
(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(1,1),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明△BCD为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB两种情况求解即可.【详解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).将C(0,1)、B(1,0)代入y=﹣x2+bx+c得:,解得b=2,c=1.∴抛物线的解析式为y=﹣x2+2x+1.(2)如图所示:作点O关于BC的对称点O′,则O′(1,1).∵O′与O关于BC对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP的最小值=O′A==2.O′A的方程为y=P点满足解得:所以P(,)(1)y=﹣x2+2x+1=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,1,B(1,0),∴CD=,BC=1,DB=2.∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,1),∴OA=1,CO=1.∴.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图所示:连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴,即,解得:AQ=3.∴Q(9,0).综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.21、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.【解析】
(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.
(2)根据平均数,中位数,众数的意义回答.【详解】解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.22、周瑜去世的年龄为16岁.【解析】
设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.根据题意建立方程求出其值就可以求出其结论.【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.由题意得;10(x﹣1)+x=x2,解得:x1=5,x2=6当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为16岁,完全符合题意.答:周瑜去世的年龄为16岁.【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键.23、1【解析】
根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【详解】原式=1×+3﹣+1﹣1=1.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.24、(1)81cm;(2)8.6cm;【解析】
(1)作EM⊥BC于点M,由EM=ECsi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度劳动合同标的及双方权益
- 二零二四年度旅游景点开发合同:某旅游公司与地方政府之间的协议
- 个人手车交易合同
- 2024年度商场卫生间广告投放承包合同
- 2024年度物业服务合同标的及服务内容
- 二零二四年度旅游服务合同:旅行社与游客之间的旅游服务合同
- 2024年度金融服务合同标的详细说明
- 2024年度艺人经纪合同代理范围与分成比例
- 2024年度教育信息化系统建设与应用合同
- 2024年度餐饮店铺营销策略加盟合同
- 第四代篦冷机液压系统的故障与维护获奖科研报告
- 二次函数线段的最值课件
- 呼吸消化科科室现状调研总结与三年发展规划汇报
- 与复旦大学合作协议书
- 第五单元(知识清单)【 新教材精讲精研精思 】 七年级语文上册 (部编版)
- 缓冲托辊说明书
- 煤矿机电运输安全培训课件
- 2023年人教版新目标八年级英语下册全册教案
- 安抚(氟比洛芬酯注射液)-泌尿外科术后疼痛管理的基础药物
- 学前教育职业规划书
- GB/T 42249-2022矿产资源综合利用技术指标及其计算方法
评论
0/150
提交评论