付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一种基于改进正弦频率估计算法的功率测量Title:PowerMeasurementUsingImprovedSinusoidalFrequencyEstimationAlgorithmAbstract:Intheeraofincreasingdemandforaccuratepowermeasurement,itiscrucialtodevelopimprovedalgorithmsthatcanestimatethefrequencyaccurately.Thispaperpresentsanewapproachtopowermeasurementthatutilizesanimprovedsinusoidalfrequencyestimationalgorithm.Theproposedalgorithmenhancesaccuracyandefficiencyinpowermeasurement,therebyimprovingtheoverallqualityofmeasurements.Thealgorithmisevaluatedandcomparedwithexistingmethods,highlightingitsadvantagesintermsofaccuracy,precision,andcomputationalcomplexity.Theresultsdemonstratethattheproposedalgorithmoutperformstraditionalmethods,indicatingitspotentialforvariousapplicationsinpowermeasurementandmanagementsystems.Keywords:powermeasurement,sinusoidalfrequencyestimation,algorithm,accuracy,efficiency1.IntroductionPowermeasurementisacriticalaspectofvariousapplications,includingpowersystems,renewableenergysources,andelectricvehicles.Accuratepowermeasurementisessentialformonitoringandoptimizingpowerconsumption,ensuringsystemstability,andenablingfairbilling.Traditionalpowermeasurementmethodsoftenrelyonsinusoidalfrequencyestimationalgorithmstoestimatethefrequencyofthepowersignalaccurately.However,thesemethodsoftensufferfromlimitationssuchaslowaccuracyandsensitivitytonoiseandinterference.Thispaperintroducesanimprovedsinusoidalfrequencyestimationalgorithmforpowermeasurement.Theproposedalgorithmaimstoenhancetheaccuracyandefficiencyofpowermeasurement,enablingmorereliableandprecisemeasurements.Thefollowingsectionsdescribethealgorithmindetail,presentitsimplementation,andevaluateitsperformanceagainstexistingmethods.2.ImprovedSinusoidalFrequencyEstimationAlgorithm2.1BasicPrinciplesTheproposedalgorithmbuildsupontheexistingsinusoidalfrequencyestimationmethods,suchastheGoertzelalgorithmandtheRecursiveLeastSquaresalgorithm.Itcombinestheadvantagesofthesemethodsandintroducesimprovementstoaddresstheirlimitations.Thealgorithmestimatesthefrequencyofthepowersignalbyanalyzingitsdiscretesamples.2.2AlgorithmDescriptionThealgorithmconsistsofthefollowingsteps:Step1:PreprocessingThepowersignalispreprocessedtoremovenoise,harmonics,andotherinterference.Thisstepensuresthatthealgorithmfocusesonthefundamentalfrequencyaccurately.Variousfilteringtechniques,suchasFourieranalysisandwavelettransform,canbeemployedforthispurpose.Step2:WindowingThepowersignalisdividedintosmallerwindowedsegmentstoimproveaccuracy.Eachsegmentisanalyzedseparatelytoestimatethefrequencywithinthatsegment.Step3:FrequencyEstimationWithineachwindowedsegment,thealgorithmusesanimprovedsinusoidalfrequencyestimationtechnique.Thistechniqueutilizesthephasedifferencebetweenconsecutivesamplestoestimatethefrequencyaccurately.Theimprovedalgorithmincorporatesadaptivefilteringmethodstoenhanceaccuracyandrobustnessagainstnoiseandinterference.Step4:CombiningFrequencyEstimatesThefrequencyestimatesfromeachwindowedsegmentarecombinedtoobtainanoverallfrequencyestimateforthepowersignal.Thiscanbeachievedthroughstatisticalaveragingorweightedaveraging,dependingonthespecificrequirementsoftheapplication.3.ImplementationandEvaluationToevaluatetheeffectivenessoftheproposedalgorithm,aseriesofexperimentswereconductedusingsyntheticpowersignalswithknownfrequencyvariations.Thealgorithmwascomparedwithtraditionalsinusoidalfrequencyestimationmethods,suchastheGoertzelalgorithmandtheRecursiveLeastSquaresalgorithm.Theresultsdemonstratedthattheimprovedsinusoidalfrequencyestimationalgorithmconsistentlyoutperformedtraditionalmethodsintermsofaccuracyandrobustnessagainstnoise.Theproposedalgorithmexhibitedminimaldeviationfromtheknownfrequencyvalues,eveninthepresenceofhighlevelsofnoiseandinterference.Additionally,thealgorithmdemonstratedfastercomputationalspeed,makingitsuitableforreal-timepowermeasurementapplications.4.ConclusionThispaperpresentedanimprovedsinusoidalfrequencyestimationalgorithmforpowermeasurement.Thealgorithmenhancesaccuracyandefficiencyinpowermeasurementbyeffectivelyestimatingthefrequencyofthepowersignal.Experimentalresultsdemonstrateditssuperiorperformancecomparedtotraditionalmethods,indicatingitspotentialforvariousapplicationsinpowermeasurementandmanagementsystems.Futureworkwillfocusonfurtherrefinementsandoptimizationsofthealgorithm,exploringitsapplicabilitytoreal-worldpowermeasurementscenarios.Additionally,thealgorithm'sintegrationintoexistingpowermeasureme
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46743-2025多抗霉素
- GB/T 19407-2025农业拖拉机操纵装置最大操纵力
- 常州市溧阳中学高三地理一轮复习自然灾害教学案
- 5-己二酮对小鼠卵巢直径的影响
- 2025年高职微电子技术(芯片制造基础)试题及答案
- 2025年高职形象设计(老年造型设计)试题及答案
- 2025年中职(高星级饭店运营与管理)前厅服务实务阶段测试题及答案
- 2025年高职石油与天然气(油气储存)试题及答案
- 2025年大学三年级(老年学)老年福利政策试题及答案
- 2025年中职资源勘查类(资源勘查基础)试题及答案
- 不锈钢泵房装修施工方案
- 汝瓷介绍教学课件
- 2025年大学《材料设计科学与工程-材料设计实验技术》考试备考题库及答案解析
- 亚朵酒店管理分析
- 幼儿园消防安全培训知识培训
- 代码安全审计培训大纲课件
- XJJ 068-2014 民用建筑电气防火设计规程
- 质检员安全培训课件
- 科研项目进度管理与质量控制
- 《信息系统安全》课程教学大纲
- 民族学概论课件
评论
0/150
提交评论