版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市第四高级中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.运行如图所示的程序框图,设输出数据构成的集合为,从集合中任取一个元素,则函数,是增函数的概率为(
)A.
B.
C.
D.参考答案:C2.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,且其图象向左平移个单位后得到函数g(x)=cosωx的图象,则函数f(x)的图象()A.关于直线x=对称 B.关于直线x=对称C.关于点(,0)对称 D.关于点(,0)对称参考答案:C【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】利用正弦函数的周期性、函数y=Asin(ωx+φ)的图象变换规律、诱导公式,求得f(x)的解析式,再利用正弦函数的图象的对称性,得出结论.【解答】解:∵函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,∴=π,∴ω=2.把其图象向左平移个单位后得到函数g(x)=cosωx=sin(2x++φ)的图象,∴+φ=kπ+,k∈Z,∴φ=﹣,∴f(x)=sin(2x﹣).由于当x=时,函数f(x)=0,故A不满足条件,而C满足条件;令x=,求得函数f(x)=sin=,故B、D不满足条件,故选:C.3.已知O是坐标原点,双曲线的两条渐近线分别为l1,l2,右焦点为F,以OF为直径的圆交l1于异于原点O的点A,若点B在l2上,且,则双曲线的方程为()A. B. C. D.参考答案:B【考点】KC:双曲线的简单性质.【分析】求出双曲线﹣=1(a>0,b>0)的渐近线的方程和圆的方程,联立方程求出A,B的坐标,结合点B在渐近线y=﹣x上,建立方程关系求得A的坐标,设B(m,n),运用向量的坐标关系,结合B在渐近线上,可得a,c的关系,再由a=1,即可得到c,b,进而得到所求双曲线的方程.【解答】解:双曲线﹣=1(a>0,b>0)的渐近线方程l1,y=x,l2,y=﹣x,F(c,0),圆的方程为(x﹣)2+y2=,将y=x代入圆的方程,得(x﹣)2+(x)2=,即x2=cx,则x=0或x=,当x=,y═?=,即A(,),设B(m,n),则n=﹣?m,则=(﹣m,﹣n),=(c﹣,﹣),∵,∴(﹣m,﹣n)=(c﹣,﹣),则﹣m=2(c﹣),﹣n=2?(﹣),即m=﹣2c,n=,即=﹣?(﹣2c)=﹣+,即=,则c2=3a2,由双曲线可得a=1,c=,b=n==.则双曲线的方程为x2﹣=1.故选:B.4.“”是“”的(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件参考答案:B5.执行如图所示的框图,若输入的N是4,则输出p的值是(
)A.6 B.24 C.30 D.120参考答案:B【分析】根据程序框图进行模拟运算即可.【详解】若,,是,,,是,,,是,,,否,,故选:B.6.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为的样本进行调查,其中从丙车间的产品中抽取了3件,则()A.9
B.10
C.12
D.13参考答案:【知识点】分层抽样I1D因为,所以选D.【思路点拨】因为分层抽样是按比例抽样,所以样本和总体中各层所占的比例相等.7.从[-4,4]上任取一个数x,从[-4,4]上任取一个数y,则使得的概率是(
)A.B.C.D.
参考答案:C:因为点(x,y)在边长为8的正方形区域内,其面积为64,满足不等式的点对应的区域为前面正方形内的一个边长为的正方形区域,其面积为32,所以所求的概率为,则选C.8.三棱锥P﹣ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的体积为()A.16π B.32π C.48π D.64π参考答案:B【考点】球内接多面体.【分析】由题意把A、B、C、P扩展为三棱柱如图,求出上下底面中心连线的中点与A的距离为球的半径,然后求出球的体积.【解答】解:由题意画出几何体的图形如图,把A、B、C、P扩展为三棱柱,上下底面中心连线的中点与A的距离为球的半径,PA=2AB=6,OE=3,△ABC是正三角形,∴AB=3,∴AE==.AO==2.所求球的体积为:(2)3=32π.故选:B.9.设是定义在R上的偶函数,对,都有,且当时,,若在区间内关于的方程(>1)恰有3个不同的实根,则的取值范围是(
)
A.(1,2)
B.
C.
D.参考答案:D略10.设函数,定义,其中,则(
)A.
B.
C.
D.参考答案:C试题分析:,,,因为,所以.两式相加可得:,.故选C.考点:1.数列求和;2.函数的性质.二、填空题:本大题共7小题,每小题4分,共28分11.复数(其中i为虚数单位)的模为
.参考答案:12.设直线与圆相交于、两点,且弦的长为,则___________.参考答案:013.设函数,则不等式的解集为__________参考答案:
知识点:函数的单调性,不等式的解法
难度:2.函数在上单调递增,则不等式等价于,解得14.在直角坐标平面xoy中,过定点(0,1)的直线L与圆交于A、B两点,若动点P(x,y)满足,则点P的轨迹方程为_____________________.参考答案:15.已知集合,,则集合=
▲
.参考答案:16.若的值是
。参考答案:略17.如图,正三棱柱的各棱长都等于,在上,为中点,且,有下述结论(1);(2);(3)二面角的大小为;(4)三棱锥的体积为,正确的有
.参考答案:(2)(3)(4)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E、G分别是CD、PC的中点,点F在PD上,且PF:FD=2:1.(Ⅰ)证明:EA⊥PB;(Ⅱ)证明:BG∥面AFC.参考答案:考点:直线与平面垂直的性质;直线与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)先利用直线与平面的判定定理证明EA⊥面PAB,然后利用直线与平面垂直的性质可得结论;(Ⅱ)取PF中点M,连接MG,可证MG∥面AFC,连接BM,BD,设AC∩BD=O,连接OF,可证BM∥面AFC,根据面面平行的判定定理可得面BGM∥面AFC,最后根据面面平行的性质可证BG∥面AFC.解答: (本小题满分12分)解:(Ⅰ)证明:因为面ABCD为菱形,且∠ABC=60°,所以△ACD为等边三角形,又因为E是CD的中点,所以EA⊥AB.…又PA⊥平面ABCD,所以EA⊥PA.
…而AB∩PA=A所以EA⊥面PAB,所以EA⊥PB.
…(Ⅱ)取PF中点M,所以PM=MF=FD.…连接MG,MG∥CF,所以MG∥面AFC.…连接BM,BD,设AC∩BD=O,连接OF,所以BM∥OF,所以BM∥面AFC.而BM∩MG=M所以面BGM∥面AFC,所以BG∥面AFC.…点评:本题主要考查了直线与平面垂直的性质,以及直线与平面平行的判定,同时考查了空间想象能力和论证推理的能力,属于基础题.19.把函数的图像向左平移个单位后得到偶函数的图像。
(Ⅰ)求的值;
(Ⅱ)求函数的单调增区间.参考答案:(1)
(Ⅱ)略20.已知满足,.(1)求,并猜想的表达式;(2)用数学归纳法证明对的猜想.参考答案:(1),,;(2)证明见解析.试题分析:(1)依题意,有,,故猜想;(2)下面用数学归纳法证明.①当时,,显然成立;②假设当)时,猜想成立,即,证明当时,也成立.结合①②可知,猜想对一切都成立.试题解析:则当时,…10分即对时,猜想也成立;
………11分结合①②可知,猜想对一切都成立.
………12分考点:合情推理与演绎推理、数学归纳法.21.已知椭圆的一个焦点为,其左顶点在圆上.(1)求椭圆的方程;(2)直线交椭圆于两点,设点关于轴的对称点为(点与点不重合),证明:直线过x轴上的一定点,并求出定点坐标.参考答案:(1)∵椭圆的左顶点在圆上,∴又∵椭圆的一个焦点为,∴∴∴椭圆的方程为
………………4分(2)设,则直线与椭圆方程联立化简并整理得,
∴,
………………8分由题设知∴直线的方程为令得
∴直线过定点.
………………12分22.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳务派遣双方协议书七篇
- 个人建筑承包协议
- 非典型麻疹综合征病因介绍
- 机械基础 课件 模块八任务三 联轴器与离合器
- (2024)黄金选矿剂生产建设项目可行性研究报告(一)
- 全景式数字游民洞察报告
- 兽医寄生虫病学练习题含参考答案
- 佐乐米贴鼻子课件
- 养老院老人洗浴卫生管理制度
- 养老院老人紧急救援人员培训制度
- 2023-2024学年广东省广州市白云区九年级(上)期末语文试卷
- 2024统编版初中八年级语文上册第六单元:大单元整体教学设计
- 五年级上册数学试题试卷(8篇)
- 2024-2025学年四年级科学上册第三单元《运动和力》测试卷(教科版)
- 学术规范与论文写作智慧树知到答案2024年浙江工业大学
- 2024年典型事故案例警示教育手册15例
- 【打印版】2021年上海市浦东新区中考一模数学试卷及解析
- EN1779-欧洲无损检测标准
- 【数据结构】A类停车场管理系统
- 生态保护红线划定.ppt
- 机械原理榫槽成型半自动切削机课程设计
评论
0/150
提交评论