版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年辽宁省大连市普兰店市第三中学高三第一次调研测试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为()A. B. C. D.2.已知m,n是两条不同的直线,,是两个不同的平面,给出四个命题:①若,,,则;②若,,则;③若,,,则;④若,,,则其中正确的是()A.①② B.③④ C.①④ D.②④3.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是()A. B. C. D.4.复数的实部与虚部相等,其中为虚部单位,则实数()A.3 B. C. D.5.已知不重合的平面和直线,则“”的充分不必要条件是()A.内有无数条直线与平行 B.且C.且 D.内的任何直线都与平行6.已知,是两条不重合的直线,是一个平面,则下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是()A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B.从2014年到2018年这5年,高铁运营里程与年价正相关C.2018年高铁运营里程比2014年高铁运营里程增长80%以上D.从2014年到2018年这5年,高铁运营里程数依次成等差数列8.著名的斐波那契数列:1,1,2,3,5,8,…,满足,,,若,则()A.2020 B.4038 C.4039 D.40409.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是()A.AC⊥BE B.EF平面ABCDC.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值10.如图是二次函数的部分图象,则函数的零点所在的区间是()A. B. C. D.11.已知集合,定义集合,则等于()A. B.C. D.12.过圆外一点引圆的两条切线,则经过两切点的直线方程是().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.观察下列式子,,,,……,根据上述规律,第个不等式应该为__________.14.设O为坐标原点,,若点B(x,y)满足,则的最大值是__________.15.某市公租房源位于、、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,则该市的任意位申请人中,恰好有人申请小区房源的概率是______.(用数字作答)16.如图,在三棱锥A﹣BCD中,点E在BD上,EA=EB=EC=ED,BDCD,△ACD为正三角形,点M,N分别在AE,CD上运动(不含端点),且AM=CN,则当四面体C﹣EMN的体积取得最大值时,三棱锥A﹣BCD的外接球的表面积为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知离心率为的椭圆经过点.(1)求椭圆的方程;(2)荐椭圆的右焦点为,过点的直线与椭圆分别交于,若直线、、的斜率成等差数列,请问的面积是否为定值?若是,求出此定值;若不是,请说明理由.18.(12分)在三棱锥中,是边长为的正三角形,平面平面,,M、N分别为、的中点.(1)证明:;(2)求三棱锥的体积.19.(12分)已知各项均不相等的等差数列的前项和为,且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.20.(12分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,.(Ⅰ)求椭圆的方程;(Ⅱ)求证:为定值.21.(12分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合..(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由.22.(10分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【详解】当为奇数时,,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以.故选:A【点睛】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.2、D【解析】
根据面面垂直的判定定理可判断①;根据空间面面平行的判定定理可判断②;根据线面平行的判定定理可判断③;根据面面垂直的判定定理可判断④.【详解】对于①,若,,,,两平面相交,但不一定垂直,故①错误;对于②,若,,则,故②正确;对于③,若,,,当,则与不平行,故③错误;对于④,若,,,则,故④正确;故选:D【点睛】本题考查了线面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.3、B【解析】
由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.【详解】解:函数,,为的零点,为图象的对称轴,,且,、,,即为奇数①.在,单调,,②.由①②可得的最大值为1.当时,由为图象的对称轴,可得,,故有,,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B.【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.4、B【解析】
利用乘法运算化简复数即可得到答案.【详解】由已知,,所以,解得.故选:B【点睛】本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.5、B【解析】
根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】A.内有无数条直线与平行,则相交或,排除;B.且,故,当,不能得到且,满足;C.且,,则相交或,排除;D.内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.故选:.【点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.6、D【解析】
利用空间位置关系的判断及性质定理进行判断.【详解】解:选项A中直线,还可能相交或异面,选项B中,还可能异面,选项C,由条件可得或.故选:D.【点睛】本题主要考查直线与平面平行、垂直的性质与判定等基础知识;考查空间想象能力、推理论证能力,属于基础题.7、D【解析】
由折线图逐项分析即可求解【详解】选项,显然正确;对于,,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题8、D【解析】
计算,代入等式,根据化简得到答案.【详解】,,,故,,故.故选:.【点睛】本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.9、D【解析】
A.通过线面的垂直关系可证真假;B.根据线面平行可证真假;C.根据三棱锥的体积计算的公式可证真假;D.根据列举特殊情况可证真假.【详解】A.因为,所以平面,又因为平面,所以,故正确;B.因为,所以,且平面,平面,所以平面,故正确;C.因为为定值,到平面的距离为,所以为定值,故正确;D.当,,取为,如下图所示:因为,所以异面直线所成角为,且,当,,取为,如下图所示:因为,所以四边形是平行四边形,所以,所以异面直线所成角为,且,由此可知:异面直线所成角不是定值,故错误.故选:D.【点睛】本题考查立体几何中的综合应用,涉及到线面垂直与线面平行的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内.10、B【解析】
根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】∵,结合函数的图象可知,二次函数的对称轴为,,,∵,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.11、C【解析】
根据定义,求出,即可求出结论.【详解】因为集合,所以,则,所以.故选:C.【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.12、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意,依次分析不等式的变化规律,综合可得答案.【详解】解:根据题意,对于第一个不等式,,则有,对于第二个不等式,,则有,对于第三个不等式,,则有,依此类推:第个不等式为:,故答案为.【点睛】本题考查归纳推理的应用,分析不等式的变化规律.14、【解析】,可行域如图,直线与圆相切时取最大值,由15、【解析】
基本事件总数,恰好有2人申请小区房源包含的基本事件个数,由此能求出该市的任意5位申请人中,恰好有2人申请小区房源的概率.【详解】解:某市公租房源位于、、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,该市的任意5位申请人中,基本事件总数,该市的任意5位申请人中,恰好有2人申请小区房源包含的基本事件个数:,该市的任意5位申请人中,恰好有2人申请小区房源的概率是.故答案为:.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于中档题.16、32π【解析】
设ED=a,根据勾股定理的逆定理可以通过计算可以证明出CE⊥ED.AM=x,根据三棱锥的体积公式,运用基本不等式,可以求出AM的长度,最后根据球的表面积公式进行求解即可.【详解】设ED=a,则CDa.可得CE2+DE2=CD2,∴CE⊥ED.当平面ABD⊥平面BCD时,当四面体C﹣EMN的体积才有可能取得最大值,设AM=x.则四面体C﹣EMN的体积(a﹣x)a×xax(a﹣x),当且仅当x时取等号.解得a=2.此时三棱锥A﹣BCD的外接球的表面积=4πa2=32π.故答案为:32π【点睛】本题考查了基本不等式的应用,考查了球的表面积公式,考查了数学运算能力和空间想象能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)是,【解析】
(1)根据及可得,再将点代入椭圆的方程与联立解出,即可求出椭圆的方程;(2)可设所在直线的方程为,,,,将直线的方程与椭圆的方程联立,用根与系数的关系求出,然后将直线、、的斜率、、分别用表示,利用可求出,从而可确定点恒在一条直线上,结合图形即可求出的面积.【详解】(1)因为椭圆的离心率为,所以,即,又,所以,①因为点在椭圆上,所以,②由①②解得,所以椭圆C的方程为.(1)可知,,可设所在直线的方程为,由,得,设,,,则,,设直线、、的斜率分别为、、,因为三点共线,所以,即,所以,又,因为直线、、的斜率成等差数列,所以,即,化简得,即点恒在一条直线上,又因为直线方程为,且,所以是定值.【点睛】本题主要考查椭圆的方程,直线与椭圆的位置关系及椭圆中的定值问题,属于中档题.18、(1)证明见解析;(2).【解析】
(1)取中点,连接,,证明平面,由线面垂直的性质可得;(2)由,即可求得三棱锥的体积.【详解】解:(1)证明:取中点D,连接,.因为,,所以且,因为,平面,平面,所以平面.又平面,所以;(2)解:因为平面,平面,所以平面平面,过N作于E,则平面,因为平面平面,,平面平面,平面,所以平面,又因为平面,所以,由于,所以所以,所以.【点睛】本题考查线面垂直,考查三棱锥体积的计算,解题的关键是掌握线面垂直的判定与性质,属于中档题.19、(1);(2).【解析】试题分析:(1)设公差为,列出关于的方程组,求解的值,即可得到数列的通项公式;(2)由(1)可得,即可利用裂项相消求解数列的和.试题解析:(1)设公差为.由已知得,解得或(舍去),所以,故.(2),考点:等差数列的通项公式;数列的求和.20、(Ⅰ);(Ⅱ),证明见解析.【解析】
(Ⅰ)根据题意列出关于,,的方程组,解出,,的值,即可得到椭圆的方程;(Ⅱ)设点,,点,,易求直线的方程为:,令得,,同理可得,所以,联立直线与椭圆方程,利用韦达定理代入上式,化简即可得到.【详解】(Ⅰ)解:由题意可知:,解得,椭圆的方程为:;(Ⅱ)证:设点,,点,,联立方程,消去得:,,①,点,,,直线的方程为:,令得,,,,同理可得,,,把①式代入上式得:,为定值.【点睛】本题主要考查直线与椭圆的位置关系、定值问题的求解;关键是能够通过直线与椭圆联立得到韦达定理的形式,利用韦达定理化简三角形面积得到定值;考查计算能力与推
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常州市溧阳中学高三生物一轮复习细胞增殖学案
- 5至6岁幼儿同伴语言冲突及解决对策的观察研究
- 九年级地理(真题改编)2027年下学期期中测试卷
- 四年级语文(说明文阅读)2027年上学期期中测试卷
- 2025年高职化学制药技术(制药技术进阶)试题及答案
- 2026年中医经络调理师(操作技能)试题及答案
- 2025年高职安全工程(风险评估)试题及答案
- 2025年中职(工程造价)工程概预算专项真题及解析
- 2025年中职(幼儿保育)幼儿游戏设计技能测试卷
- 2025年高职护理(儿科护理)试题及答案
- 露天采石场安全监管
- 福建省福州市钱塘小学2025-2026学年三年级上学期期中素养测评数学试卷(含答案)
- 2025-2026学年人教版(新教材)小学信息科技三年级全一册(上册)期末综合测试卷及答案
- 2025年广西普法考试题库及答案
- 低碳饮食课件
- 前列腺癌症课件
- 与认知障碍老年人沟通
- 《成都市智能建造人工智能(AI)应用指南(2025版)》
- GB/T 14975-2025结构用不锈钢无缝钢管
- 2025首届电力低空经济发展大会:电力场景具身智能检修机器人技术及应用
- 心理因素对创新行为的影响
评论
0/150
提交评论