福建省宁德市霞浦县民族中学高一数学理摸底试卷含解析_第1页
福建省宁德市霞浦县民族中学高一数学理摸底试卷含解析_第2页
福建省宁德市霞浦县民族中学高一数学理摸底试卷含解析_第3页
福建省宁德市霞浦县民族中学高一数学理摸底试卷含解析_第4页
福建省宁德市霞浦县民族中学高一数学理摸底试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省宁德市霞浦县民族中学高一数学理摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.参考答案:2.已知函数,分别如下表示:0110,则的值为(

)A.

B.

C.

D.参考答案:A3.设tanα、tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)=()A.﹣3 B.3 C.﹣1 D.1参考答案:A【考点】两角和与差的正切函数.【分析】由tanα,tanβ是方程x2﹣3x+2=0的两个根,利用根与系数的关系分别求出tanα+tanβ及tanαtanβ的值,然后将tan(α+β)利用两角和与差的正切函数公式化简后,将tanα+tanβ及tanαtanβ的值代入即可求出值.【解答】解:∵tanα,tanβ是方程x2﹣3x+2=0的两个根,∴tanα+tanβ=3,tanαtanβ=2,则tan(α+β)===﹣3.故选:A.4.在中,点是延长线上一点,若,则()A. B.

C.

D.参考答案:C5.(4分)若当x∈R时,y=均有意义,则函数的图象大致是() A. B. C. D. 参考答案:B考点: 函数的图象.专题: 函数的性质及应用.分析: 由对数函数的定义知a>0且a≠1,函数的定义域为(﹣∞,0)∪(0,+∞)由x∈A∪B={﹣4,﹣3,1}时,y=均有意义,则,推出0<a<1,再把函数表达式中的绝对值去掉,再讨论函数的单调性.解答: 由对数函数的定义知a>0且a≠1,函数的定义域为(﹣∞,0)∪(0,+∞)若当x∈A∪B={﹣4,﹣3,1}时,y=均有意义,则,0<a<1,又x>0时,,∵单调递减,y=logau单调递减,∴由复合函数的单调性知单调递增,∵为偶函数,其图象应关于y轴对称,∴x<0时,单调递减,综上知,选项B符合,故选:B.点评: 本题主要考查函数的性质,利用函数的奇偶性判断函数的单调性,其中还应用了复合函数单调性的判断,较为综合.6.已知ABCD为平行四边形,若向量,则向量为(

)A.

B.

C.

D.参考答案:C7.设,其中,如果,求实数的取值范围.参考答案:A={0,-4},又AB=B,所以BA.(i)B=时,4(a+1)2-4(a2-1)<0,得a<-1;………………4分(ii)B={0}或B={-4}时,0

得a=-1;………………8分

(iii)B={0,-4},

解得a=1.………………12分综上所述实数a=1或a-1.………………13分8.在半径为1的圆中,3弧度的圆心角所对的弧长为(

)A.3π

B.3

C.

D.参考答案:B9.设函数若f(m)>1,则m的取值范围是(

)A

B

C

D

参考答案:C略10.下列各式正确的是(

)A.

B.C.

D.参考答案:D对于,,,故,故错误;根据对数函数的单调性,可知错误故选.二、填空题:本大题共7小题,每小题4分,共28分11.下列角中,终边与相同的角是(

参考答案:B12.已知正数数列{an}的前n项和为Sn,,设c为实数,对任意的三个成等差数列的不等的正整数m,k,n,不等式Sm+Sn>cSk恒成立,则实数c的取值范围是.参考答案:(﹣∞,2]【考点】8H:数列递推式.【分析】,可得n≥2时,Sn﹣Sn﹣1=﹣1,化为:﹣=1.利用等差数列的通项公式可得Sn=n2.设c为实数,对任意的三个成等差数列的不等的正整数m,k,n,不等式Sm+Sn>cSk恒成立,则2k=m+n,(m+1)2+(n+1)2>c(k+1)2,再利用基本不等式的性质即可得出.【解答】解:∵,∴n≥2时,Sn﹣Sn﹣1=﹣1,化为:=Sn﹣1>0,解得﹣=1.n=1时,﹣1,解得a1=1=S1.∴数列是等差数列,公差为1.∴=1+(n﹣1)=n.∴Sn=n2.设c为实数,对任意的三个成等差数列的不等的正整数m,k,n,不等式Sm+Sn>cSk恒成立,则2k=m+n,(m+1)2+(n+1)2>c(k+1)2,∵2≥(m+1+n+1)2=(2k+2)2=4(k+1)2.∴(m+1)2+(n+1)2≥2(k+1)2,则实数c的取值范围是c≤2.故答案为:(﹣∞,2].13.已知函数f(x)=Asin2x,g(x)=,直线x=m与f(x),g(x)的图象分别交M、N两点,且|MN|(M、N两点间的距离)的最大值为10,则常数A的值为

Δ

.参考答案:5略14.,是四面体中任意两条棱所在的直线,则,是共面直线的概率为

.参考答案:0.8略15.函数为区间上的单调增函数,则实数的取值范围为

.参考答案:(1,3)16.在正数数列{an}中,,且点在直线上,则前n项和Sn等于__.参考答案:【分析】在正数数列中,由点在直线上,知,所以,得到数列是首项为1,公比为2的等比数列,由此能求出前n项和,得到答案.【详解】由题意,在正数数列中,,且在直线上,可得,所以,即,因为,所以数列表示首项为1,公比为2的等比数列,所以,故答案为:.【点睛】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.17.已知若,则

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分9分)求函数在上的值域.参考答案:ks5u…………4分而,则当时,;当时,∴值域为………………9分19.已知函数f(x)=x+﹣4,g(x)=kx+3.(1)当a=k=1时,求函数y=f(x)+g(x)的单调递增与单调递减区间;(2)当a∈[3,4]时,函数f(x)在区间[1,m]上的最大值为f(m),试求实数m的取值范围;(3)当a∈[1,2]时,若不等式|f(x1)|﹣|f(x2)|<g(x1)﹣g(x2)对任意x1,x2∈[2,4](x1<x2)恒成立,求实数k的取值范围.参考答案:【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)将a=k=1代入函数,求出函数y=f(x)+g(x)的导数,从而求出函数的单调区间即可;(2)解不等式f(m)≥f(1)即可;(3)不等式等价于F(x)=|f(x)|﹣g(x)在[2,4]上递增,显然F(x)为分段函数,结合单调性对每一段函数分析讨论即可.【解答】解:(1)a=k=1时,y=f(x)+g(x)=2x+﹣1,y′=2﹣=,令y′>0,解得:x>1或x<﹣1,令y′<0,解得:﹣1<x<1且x≠0,故函数在(﹣∞,﹣1)递增,在(﹣1,0),(0,1)递减,在(1,+∞)递增;(2)∵a∈[3,4],∴y=f(x)在(1,)上递减,在(,+∞)上递增,又∵f(x)在区间[1,m]上的最大值为f(m),∴f(m)≥f(1),解得(m﹣1)(m﹣a)≥0,∴m≥amax,即m≥4;(3)∵|f(x1)|﹣|f(x2)|<g(x1)﹣g(x2),∴|f(x1)|﹣g(x1)<|f(x2)|﹣g(x2)恒成立,令F(x)=|f(x)|﹣g(x),则F(x)在[2,4]上递增.对于F(x)=,(i)当x∈[2,2+]时,F(x)=(﹣1﹣k)x﹣+1,①当k=﹣1时,F(x)=﹣+1在[2,2+]上递增,所以k=﹣1符合;②当k<﹣1时,F(x)=(﹣1﹣k)x﹣+1在[2,2+]上递增,所以k<﹣1符合;③当k>﹣1时,只需≥2+,即≥(+)max=2+,所以﹣1<k≤6﹣4,从而k≤6﹣4;(ii)当x∈(2+,4]时,F(x)=(1﹣k)x+﹣7,①当k=1时,F(x)=﹣7在(2+,4]上递减,所以k=1不符合;②当k>1时,F(x)=(1﹣k)x+﹣7在(2+,4]上递减,所以k>1不符合;③当k<1时,只需≤2+,即≤(+)min=1+,所以k<2﹣2,综上可知:k≤6﹣4.20.已知二次函数f(x)=mx2+4x+1,且满足f(﹣1)=f(3).(1)求函数f(x)的解析式;(2)若函数f(x)的定义域为(﹣2,2),求f(x)的值域.参考答案:【考点】二次函数的性质.【分析】(1)由f(﹣1)=f(3)可得该二次函数的对称轴为x=1,即可求函数f(x)的解析式;(2)若函数f(x)的定义域为(﹣2,2),利用配方法求f(x)的值域.【解答】解:(1)由f(﹣1)=f(3)可得该二次函数的对称轴为x=1…即从而得m=﹣2…所以该二次函数的解析式为f(x)=﹣2x2+4x+1…(2)由(1)可得f(x)=﹣2(x﹣1)2+3…所以f(x)在(﹣2,2]上的值域为(﹣15,3]…21.△中,内角满足,且,

求.参考答案:解:由三角形内角和定理得,结合得.

……………分又因为,且,则.……………分从而.……………………分

略22.(15分)某市居民阶梯电价标准如下:第一档电量(用电量不超过180千瓦时)的电价(简称为基础电价)为0.57元、千瓦时;第二档电量(超过180千瓦时,不超过400千瓦时)的电价每千瓦时比基础电价提高0.05元;第三档电量(400千瓦时以上)的电价每千瓦时比基础电价提高0.30元(具体见表格).若某月某用户用电量为x千瓦时,需交费y元. 用电量(单位:千瓦时) 用电价格(单位:元/千瓦时)第一档 180及以下部分 0.57第二档 超180至400部分 0.62第三档 超400部分 0.87(Ⅰ)求y关于x的函数关系式;(Ⅱ)若该用户某月交电费为115元,求该用户该月的用电量.参考答案:考点: 分段函数的应用;函数解析式的求解及常用方法.专题: 计算题;函数的性质及应用.分析: (Ⅰ)分别考虑当0≤x≤180,当180<x≤400时,当x>400时,由题意运用一次函数的形式求出各段的解析式;(Ⅱ)分别求出前两段的最大值,即可判断在第二段,解方程即可得到所求值.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论