离散随机变量及其分布律_第1页
离散随机变量及其分布律_第2页
离散随机变量及其分布律_第3页
离散随机变量及其分布律_第4页
离散随机变量及其分布律_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二节

离散随机变量及其分布律1可编辑ppt一、离散型随机变量的分布律定义2可编辑ppt离散型随机变量的分布律也可表示为或3可编辑ppt离散型分布律的两个基本性质证明:因为x1,x2,x3,….是X的所有可能取的值,且当i≠j时,{X=xi}∩{X=xj}=Φ,故从而有4可编辑ppt分布函数分布律离散型随机变量的分布函数离散型随机变量分布律与分布函数的关系5可编辑ppt=P(抽得的两件全为次品)求分布律举例

设有一批产品20件,其中有3件次品,从中任意抽取2件,如果用X表示取得的次品数,求随机变量X的分布律及事件“至少抽得一件次品”的概率。解:X的可能取值为0,1,2=P(抽得的两件全为正品)P{X=1}P{X=2}=P(只有一件为次品)P{X=0}6可编辑ppt故X的分布律为而“至少抽得一件次品”={X≥1}={X=1}

{X=2}P{X≥1}=P{X=1}+P{X=2}注意:{X=1}与{X=2}是互不相容的!

实际上,这仍是古典概型的计算题,只是表达事件的方式变了故7可编辑ppt

从一批次品率为p的产品中,有放回抽样直到抽到次品为止。求抽到次品时,已抽取的次数X的分布律。解记Ai=“第i次取到正品”,i=1,2,3,…

则Ai,

i=1,2,3,…

是相互独立的!且X的所有可能取值为1,2,3,…,k,…P(X=k)=(1-p)k-1p,k=1,2,…(X=k)对应着事件

例8可编辑ppt设随机变量X的分布律为试确定常数b.解由分布律的性质,有例9可编辑ppt二、常见离散型随机变量的概率分布1、两点分布(0-1分布)1-ppP01X

则称X服从参数为p的两点分布或(0-1)分布,△背景:样本空间只有两个样本点的情况都可以用两点分布来描述。如:上抛一枚硬币。△定义:

若随机变量X的分布律为:10可编辑ppt例设一个袋中装有3个红球和7个白球,现在从中随机抽取一球,如果每个球抽取的机会相等,并且用数“1”代表取得红球,“0”代表取得白球,则随机抽取一球所得的值是一个离散型随机变量其概率分布为即X服从两点分布。11可编辑ppt

其中0<p<1,则称X服从参数为n,p的二项分布(也称Bernoulli分布),记为X~B(n,p)在n重伯努利试验中,若以X表示事件A发生的次数,

则X可能的取值为0,1,2,3,…,n.随机变量X的分布律2、二项分布(Binomialdistribution)12可编辑ppt二项分布的图形13可编辑ppt

从一批由9件正品、3件次品组成的产品中,有放回地抽取5次,每次抽一件,求恰好抽到两次次品的概率.

有放回地抽取5件,可视为5重Bernoulli实验记X为共抽到的次品数,则A=“一次实验中抽到次品”,P(A)=3/12,n=5p=1/4例解14可编辑ppt例

一大批种子发芽率为90%,今从中任取10粒.求播种后,求(1)恰有8粒发芽的概率;(2)不小于8粒发芽的概率。解X~B(10,0.9)(1)P(X=8)=P(X=8)+P(X=9)+P(X=10)15可编辑ppt3.几何分布若随机变量X的分布律为则称X服从几何分布.实例设某批产品的次品率为p,对该批产品做有放回的抽样检查,直到第一次抽到一只次品为止(在此之前抽到的全是正品),那么所抽到的产品数目X

是一个随机变量,求X的分布律.16可编辑ppt所以X服从几何分布.说明

几何分布可作为描述某个试验“首次成功”的概率模型.解17可编辑ppt4.超几何分布设X的分布律为

超几何分布在关于废品率的计件检验中常用到.说明18可编辑ppt5、泊松分布

Poissondistribution若随机变量X的分布律为:

其中

>0,则称X服从参数为

的泊松分布X~P()定义19可编辑ppt泊松分布的图形20可编辑ppt服务台在某时间段内接待的服务次数X;交换台在某时间段内接到呼叫的次数Y;矿井在某段时间发生事故的次数;显微镜下相同大小的方格内微生物的数目;单位体积空气中含有某种微粒的数目

体积相对小的物质在较大的空间内的稀疏分布,都可以看作泊松分布,其参数

可以由观测值的平均值求出。

实际问题中若干R.v.X是服从或近似服从

Poisson分布的21可编辑ppt

已知某电话交换台每分钟接到的呼唤次数X服从的泊松分布,分别求(1)每分钟内恰好接到3次呼唤的概率;(2)每分钟不超过4次的概率例解22可编辑ppt泊松定理

实际应用中:当n较大,p较小,np适中时,即可用泊松公式近似替换二项概率公式二项分布的泊松近似ThePoissonApproximationtotheBinomialDistribution23可编辑ppt二项分布

泊松分布n很大,p

很小上面我们提到24可编辑ppt例

为了保证设备正常工作,需配备适量的维修工人(工人配备多了就浪费,配备少了又要影响生产),现有同类型设备300台,各台工作是相互独立的,发生故障的概率都是0.01.在通常情况下一台设备的故障可由一个人来处理(我们也只考虑这种情况),问至少需配备多少工人,才能保证设备发生故障但不能及时维修的概率小于0.01?解所需解决的问题使得合理配备维修工人问题25可编辑ppt由泊松定理得故有即个工人,才能保证设备发生故障但不能及时维修的概率小于0.01.故至少需配备826可编辑ppt例:设一只昆虫所产虫卵个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论