版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Self-driving Surveillancedetection Medicaldiagnostics GamePersonalassistant
DeepLearning深度学习正在改变世界
Art Imagerecognition Speechrecognition Naturallanguage Generativemodel Reinforcementlearning catdoghoneybadgercatdoghoneybadger
CatDogRaccoonlossloss𝑑𝑤1
𝑑𝑤2
𝑑𝑤3
𝑑𝑤4
𝑑𝑤5
ErrorsDogRDMA14Mimages海量的(标识)数据RDMA14Mimages
深度学习算法的进步 语言、框架
计算能力 深度学习+系统的进步:编程语言、优化、计算机体系结构、并行计算以及分布式系统E.g.,imageclassificationproblemMNISTImageNetWebImages60Ksamples16MsamplesBillionsofImages10categories1000categoriesOpenedcategoriesTESTERRORRATE(%)TESTERRORRATE(%)123AlexNet,16.4%ReLU,Dropout,2012Inception,6.7%Batchnormalization,2015ResNet,3.57%Residualway,2015 AlexNet,16.4%ReLU,Dropout,2012Inception,6.7%Batchnormalization,2015ResNet,3.57%Residualway,2015EfficientNet,3.1%NASLeNet,convolution,max-pooling,softmax,1998EfficientNet,3.1%NASLeNet,convolution,max-pooling,softmax,1998 ImagerecognitionSpeechrecognition
NaturallanguageReinforcementlearning TPUv3360TPUv3360TopsV100TPUv1125Tops90TopsPerformance(Op/Sec)?TPUDedicatedPerformance(Op/Sec)?TPUDedicatedHardwareGPUCPUMoore’slaw5KopsENIAC~500GopsXeonE5108x105x
1970 1980 1990 2000
2019CompilerBackendTVMTensorFlowXLACompilerBackendTVMTensorFlowXLALanguageFrontendSwiftforTensorFlowMxNetCNTKLanguageFrontendSwiftforTensorFlowMxNetCNTKPyTorchCustompurposemachinelearningalgorithmsTheanoDisBeliefCaffeAlgebra&linearAlgebra&linearlibsCPUGPUDensematmulengineGPUFPGASpecialAIacceleratorsTPUGraphCoreOtherASICs CustompurposemachinelearningalgorithmsTheanoCustompurposemachinelearningalgorithmsTheanoDisBeliefCaffeDeeplearningframeworksprovideeasierwaystoleveragevariouslibrariesMachineLearningLanguageandCompilerPowerfulCompilerInfrastructure:Codeoptimization,sparsityoptimization,hardwaretargetingAFull-FeaturedProgrammingLanguageforML:ExpressiveandflexibleControlflow,recursion,sparsityAlgebra&Algebra&linearlibsCPUGPUAIframeworkDensematmulengineSIMD→MIMDSparsitySupportControlFlowandDynamicityAssociatedMemory End-to-EndAIUserExperiencesModel,Algorithm,Pipeline,Experiment,End-to-EndAIUserExperiencesModel,Algorithm,Pipeline,Experiment,LifeCycleManagementProgrammingInterfacesComputationgraph,(auto)GradientcalculationIR,CompilerinfrastructureProgrammingInterfacesComputationgraph,(auto)GradientcalculationIR,CompilerinfrastructureHardwareAPIs(GPU,CPU,FPGA,ASIC)ResourceManagement/SchedulerHardwareAPIs(GPU,CPU,FPGA,ASIC)ResourceManagement/Scheduler ScalableNetworkStack(RDMA,IB,NVLink)DeepLearningRuntime:Optimizer,Planner,ExecutorArchitecture(singlenodeandCloud)
class3class4class5class6class7class8更广泛的AI系统生态class
机器学习新模式(RL)
深度学习算法和框架classclassclass
自动机器学习(AutoML)安全与隐私模型推导、压缩与优化
通用AI算法支持与进化深度神经网络编译架构及优化
深度学习任务运行和优 通用资源管理和调度化环境 统
新型硬件及相关高性能网络和计算栈 (2)开始训练
定义网络结构 Fullyconnected最后几层
Convolutionalneuralnetwork等Locality强的数据
Recurrentneuralnetwork化的数据,比如文本信息、知识图
Transformerneuralnetwork比如文本信息 #ArecursiveTreeBankmodelinadozenlinesofJPLcode#Walkthetree,accumulatingembeddingvecs#Wordembeddingmodelisusedattheleafnodetomapword#indexintohigh-dimensionalsemanticwordrepresentation.#Getsemanticrepresentationsforleftandrightchildren.#Acompositionfunctionisusedtolearnsemantic#representationforphraseattheinternalnode.#Maptreeembeddingtosentiment
更多样化的结构更复杂的依赖关系更细粒度的计算模式ExecutionRuntimeCPU,GPU,RDMAdevicesGraphdefinition(IR)xw*b+yFront-endLanguageBinding:Python,Lua,R,C++OptimizationBatching,Cache,Overlap ExecutionRuntimeCPU,GPU,RDMAdevicesGraphdefinition(IR)xw*b+yFront-endLanguageBinding:Python,Lua,R,C++OptimizationBatching,Cache,OverlapData-FlowGraph(DFG)asIntermediateRepresentation
x y z*a+bΣc
TensorFlow AddgradientbackpropagationAddgradientbackpropagationData-FlowGraph(DFG)xyz𝛻x𝛻y*a*𝐠𝛻z+bΣc+𝐠𝛻a𝛻bΣ𝐠x y z
𝛻x 𝛻yCPUcodeGPUcode
* a+ +𝐠b 𝛻bΣ Σ𝐠c
𝛻a
𝛻zxyz𝛻x𝛻y*a*𝐠𝛻z+bΣc+𝐠𝛻a𝛻bΣ𝐠xyz𝛻x𝛻y*a*𝐠𝛻z+bΣc+𝐠𝛻a𝛻bΣ𝐠......1......1Operators IDEProgrammingwith:VSCode,JupiterNotebookIDEProgrammingwith:VSCode,JupiterNotebookLanguageIntegratedwithmainstreamPL:PyTorchandTensorFlowinsidePythonCompilerIntermediaterepresentationCompilationOptimizationBasicdatastructure:TensorLexicalanalysis:TokenUsercontrolled:mini-batchBasiccomputation:DAGParsing:ASTDataparallelismandmodelparallelismAdvancefeatures:controlflowSemanticanalysis:SymbolicADLoopnetsanalysis:pipelineparallelism,controlflowGeneralIRs:MLIRCodeoptimizationDataflowanalysis:Arithmetic,FusionCodegenerationHardwaredependentoptimizations:matrixcomputation,layoutResourceallocationandscheduler:memory,recomputation,RuntimesSinglenode:CuDNNMultimode:Parameterservers,AllreducerComputationclusterresourcemanagementandjobschedulerHardwareHardwareaccelerators:CPU/GPU/ASIC/FPGANetworkaccelerators:RDMA/IB/NVLinkFrameworksArchitectureCompilerBackendTVMTensorFlowXLALanguageFrontendSwiftforTensorFlowMxNetTensorFlowCNTKPyTorch CompilerBackendTVMTensorFlowXLALanguageFrontendSwiftforTensorFlowMxNetTensorFlowCNTKPyTorchDeeplearningframeworksSpecialAIacceleratorsTPUGraphCoreOtherASICsAIFrameworkDensematmulengineGPUFPGAimport"tensorflow/core/framework/to";SpecialAIacceleratorsTPUGraphCoreOtherASICsAIFrameworkDensematmulengineGPUFPGAMachineLearningLanguageandCompilerPowerfulCompilerInfrastructure:Codeoptimization,sparsityoptimization,hardwaretargetingAFull-FeaturedProgrammingLanguageforML:ExpressiveandflexibleControlflow,recursion,sparsityMachineLearningLanguageandCompilerPowerfulCompilerInfrastructure:Codeoptimization,sparsityoptimization,hardwaretargetingAFull-FeaturedProgrammingLanguageforML:ExpressiveandflexibleControlflow,recursion,sparsitySIMD→SIMD→MIMDSparsitySupportControlFlowandDynamicityAssociatedMemory//SyntacticallysimilartoLLVM:func@testFunction(%arg0:i32){%x=call@thingToCall(%arg0):(i32)->i32br^bb1^bb1:%y=addi%x,%x:i32return%y:i32}深度学习高度依赖数据规模和模型规模
8layers1.416%Error2012AlexNet
Image152layersGFLOP%Error2015ResNetSpeech提高训练速度可以加快深度学习模型的开发速度大规模部署深度学习模型需要更快和更高效的推演速度Inferenceperformance→Servinglatency
80GFLOP7,000hrsofData8%Error2014DeepSpeech1
465GFLOP12,000hrsofData5%Error2015DeepSpeech2 Differentarchitectures:CNN,RNN,Transformer,…
Highcomputationresourcerequirements:modelsize,…Differentgoals:throughput,accuracy,…BeBetransparenttovarioususerrequirementsapplyoverheterogeneoushardwareenvironmentScale-out LocalEfficiency MemoryEffectivenessHardware SSD CPU/GPU/FGPA InfiniBand/NVLinkHyper-params OptimizerMini-batchLearningrateOptimizations Hardware SSD CPU/GPU/FGPA InfiniBand/NVLinkHyper-params OptimizerMini-batchLearning
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 4378-1:2024 EN Plain bearings - Terms,definitions,classification and symbols - Part 1: Design,bearing materials and their properties
- 2024二手股票买卖合同2篇
- 疫情防控小班课件
- 2024年度工程环保设施施工合同技术要求2篇
- 简单的吊车租赁合同
- 上课课件背景图片
- 无房产证买卖合同范本
- 2024版影视作品版权许可使用协议3篇
- 二零二四年度林地开发与保护土石方运输合同3篇
- 介绍礼仪课件中班
- 6.3 生殖器官的生长说课稿
- DL∕T 1075-2016 保护测控装置技术条件
- 路基土石方数量计算表
- 2024-2030全球与中国自动化智能储物柜系统市场现状及未来发展趋势
- 麻醉质控汇报
- 2024入团考试团校考试题库(含答案)
- 《河北省预防接种异常反应保险补偿工作方案(试行)》
- 《沙盘模拟》期末考试复习题库(含答案)
- 2023-2024学年高一下学期期中考试家长会课件
- 感恩主题班会课件《感谢有你一路同行》
- 《记念刘和珍君》《为了忘却的记念》比较阅读 统编版高中语文选择性必修中册
评论
0/150
提交评论