2024微软人工智能系统概述_第1页
2024微软人工智能系统概述_第2页
2024微软人工智能系统概述_第3页
2024微软人工智能系统概述_第4页
2024微软人工智能系统概述_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Self-driving Surveillancedetection Medicaldiagnostics GamePersonalassistant

DeepLearning深度学习正在改变世界

Art Imagerecognition Speechrecognition Naturallanguage Generativemodel Reinforcementlearning catdoghoneybadgercatdoghoneybadger

CatDogRaccoonlossloss𝑑𝑤1

𝑑𝑤2

𝑑𝑤3

𝑑𝑤4

𝑑𝑤5

ErrorsDogRDMA14Mimages海量的(标识)数据RDMA14Mimages

深度学习算法的进步 语言、框架

计算能力 深度学习+系统的进步:编程语言、优化、计算机体系结构、并行计算以及分布式系统E.g.,imageclassificationproblemMNISTImageNetWebImages60Ksamples16MsamplesBillionsofImages10categories1000categoriesOpenedcategoriesTESTERRORRATE(%)TESTERRORRATE(%)123AlexNet,16.4%ReLU,Dropout,2012Inception,6.7%Batchnormalization,2015ResNet,3.57%Residualway,2015 AlexNet,16.4%ReLU,Dropout,2012Inception,6.7%Batchnormalization,2015ResNet,3.57%Residualway,2015EfficientNet,3.1%NASLeNet,convolution,max-pooling,softmax,1998EfficientNet,3.1%NASLeNet,convolution,max-pooling,softmax,1998 ImagerecognitionSpeechrecognition

NaturallanguageReinforcementlearning TPUv3360TPUv3360TopsV100TPUv1125Tops90TopsPerformance(Op/Sec)?TPUDedicatedPerformance(Op/Sec)?TPUDedicatedHardwareGPUCPUMoore’slaw5KopsENIAC~500GopsXeonE5108x105x

1970 1980 1990 2000

2019CompilerBackendTVMTensorFlowXLACompilerBackendTVMTensorFlowXLALanguageFrontendSwiftforTensorFlowMxNetCNTKLanguageFrontendSwiftforTensorFlowMxNetCNTKPyTorchCustompurposemachinelearningalgorithmsTheanoDisBeliefCaffeAlgebra&linearAlgebra&linearlibsCPUGPUDensematmulengineGPUFPGASpecialAIacceleratorsTPUGraphCoreOtherASICs CustompurposemachinelearningalgorithmsTheanoCustompurposemachinelearningalgorithmsTheanoDisBeliefCaffeDeeplearningframeworksprovideeasierwaystoleveragevariouslibrariesMachineLearningLanguageandCompilerPowerfulCompilerInfrastructure:Codeoptimization,sparsityoptimization,hardwaretargetingAFull-FeaturedProgrammingLanguageforML:ExpressiveandflexibleControlflow,recursion,sparsityAlgebra&Algebra&linearlibsCPUGPUAIframeworkDensematmulengineSIMD→MIMDSparsitySupportControlFlowandDynamicityAssociatedMemory End-to-EndAIUserExperiencesModel,Algorithm,Pipeline,Experiment,End-to-EndAIUserExperiencesModel,Algorithm,Pipeline,Experiment,LifeCycleManagementProgrammingInterfacesComputationgraph,(auto)GradientcalculationIR,CompilerinfrastructureProgrammingInterfacesComputationgraph,(auto)GradientcalculationIR,CompilerinfrastructureHardwareAPIs(GPU,CPU,FPGA,ASIC)ResourceManagement/SchedulerHardwareAPIs(GPU,CPU,FPGA,ASIC)ResourceManagement/Scheduler ScalableNetworkStack(RDMA,IB,NVLink)DeepLearningRuntime:Optimizer,Planner,ExecutorArchitecture(singlenodeandCloud)

class3class4class5class6class7class8更广泛的AI系统生态class

机器学习新模式(RL)

深度学习算法和框架classclassclass

自动机器学习(AutoML)安全与隐私模型推导、压缩与优化

通用AI算法支持与进化深度神经网络编译架构及优化

深度学习任务运行和优 通用资源管理和调度化环境 统

新型硬件及相关高性能网络和计算栈 (2)开始训练

定义网络结构 Fullyconnected最后几层

Convolutionalneuralnetwork等Locality强的数据

Recurrentneuralnetwork化的数据,比如文本信息、知识图

Transformerneuralnetwork比如文本信息 #ArecursiveTreeBankmodelinadozenlinesofJPLcode#Walkthetree,accumulatingembeddingvecs#Wordembeddingmodelisusedattheleafnodetomapword#indexintohigh-dimensionalsemanticwordrepresentation.#Getsemanticrepresentationsforleftandrightchildren.#Acompositionfunctionisusedtolearnsemantic#representationforphraseattheinternalnode.#Maptreeembeddingtosentiment

更多样化的结构更复杂的依赖关系更细粒度的计算模式ExecutionRuntimeCPU,GPU,RDMAdevicesGraphdefinition(IR)xw*b+yFront-endLanguageBinding:Python,Lua,R,C++OptimizationBatching,Cache,Overlap ExecutionRuntimeCPU,GPU,RDMAdevicesGraphdefinition(IR)xw*b+yFront-endLanguageBinding:Python,Lua,R,C++OptimizationBatching,Cache,OverlapData-FlowGraph(DFG)asIntermediateRepresentation

x y z*a+bΣc

TensorFlow AddgradientbackpropagationAddgradientbackpropagationData-FlowGraph(DFG)xyz𝛻x𝛻y*a*𝐠𝛻z+bΣc+𝐠𝛻a𝛻bΣ𝐠x y z

𝛻x 𝛻yCPUcodeGPUcode

* a+ +𝐠b 𝛻bΣ Σ𝐠c

𝛻a

𝛻zxyz𝛻x𝛻y*a*𝐠𝛻z+bΣc+𝐠𝛻a𝛻bΣ𝐠xyz𝛻x𝛻y*a*𝐠𝛻z+bΣc+𝐠𝛻a𝛻bΣ𝐠......1......1Operators IDEProgrammingwith:VSCode,JupiterNotebookIDEProgrammingwith:VSCode,JupiterNotebookLanguageIntegratedwithmainstreamPL:PyTorchandTensorFlowinsidePythonCompilerIntermediaterepresentationCompilationOptimizationBasicdatastructure:TensorLexicalanalysis:TokenUsercontrolled:mini-batchBasiccomputation:DAGParsing:ASTDataparallelismandmodelparallelismAdvancefeatures:controlflowSemanticanalysis:SymbolicADLoopnetsanalysis:pipelineparallelism,controlflowGeneralIRs:MLIRCodeoptimizationDataflowanalysis:Arithmetic,FusionCodegenerationHardwaredependentoptimizations:matrixcomputation,layoutResourceallocationandscheduler:memory,recomputation,RuntimesSinglenode:CuDNNMultimode:Parameterservers,AllreducerComputationclusterresourcemanagementandjobschedulerHardwareHardwareaccelerators:CPU/GPU/ASIC/FPGANetworkaccelerators:RDMA/IB/NVLinkFrameworksArchitectureCompilerBackendTVMTensorFlowXLALanguageFrontendSwiftforTensorFlowMxNetTensorFlowCNTKPyTorch CompilerBackendTVMTensorFlowXLALanguageFrontendSwiftforTensorFlowMxNetTensorFlowCNTKPyTorchDeeplearningframeworksSpecialAIacceleratorsTPUGraphCoreOtherASICsAIFrameworkDensematmulengineGPUFPGAimport"tensorflow/core/framework/to";SpecialAIacceleratorsTPUGraphCoreOtherASICsAIFrameworkDensematmulengineGPUFPGAMachineLearningLanguageandCompilerPowerfulCompilerInfrastructure:Codeoptimization,sparsityoptimization,hardwaretargetingAFull-FeaturedProgrammingLanguageforML:ExpressiveandflexibleControlflow,recursion,sparsityMachineLearningLanguageandCompilerPowerfulCompilerInfrastructure:Codeoptimization,sparsityoptimization,hardwaretargetingAFull-FeaturedProgrammingLanguageforML:ExpressiveandflexibleControlflow,recursion,sparsitySIMD→SIMD→MIMDSparsitySupportControlFlowandDynamicityAssociatedMemory//SyntacticallysimilartoLLVM:func@testFunction(%arg0:i32){%x=call@thingToCall(%arg0):(i32)->i32br^bb1^bb1:%y=addi%x,%x:i32return%y:i32}深度学习高度依赖数据规模和模型规模

8layers1.416%Error2012AlexNet

Image152layersGFLOP%Error2015ResNetSpeech提高训练速度可以加快深度学习模型的开发速度大规模部署深度学习模型需要更快和更高效的推演速度Inferenceperformance→Servinglatency

80GFLOP7,000hrsofData8%Error2014DeepSpeech1

465GFLOP12,000hrsofData5%Error2015DeepSpeech2 Differentarchitectures:CNN,RNN,Transformer,…

Highcomputationresourcerequirements:modelsize,…Differentgoals:throughput,accuracy,…BeBetransparenttovarioususerrequirementsapplyoverheterogeneoushardwareenvironmentScale-out LocalEfficiency MemoryEffectivenessHardware SSD CPU/GPU/FGPA InfiniBand/NVLinkHyper-params OptimizerMini-batchLearningrateOptimizations Hardware SSD CPU/GPU/FGPA InfiniBand/NVLinkHyper-params OptimizerMini-batchLearning

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论