




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于微积分基本定理(一)复习:①什么叫定积分?一起回顾计算的过程:(分割、近似代替、求和、取极限)第2页,共19页,2024年2月25日,星期天(二)设置情景,合作探究:寻求新方法
如图,一个作变速直线运动的物体的运动规律是。由导数的概念可知,它在任意时刻t的速度是。设这个物体在时间段内的位移为S,你能分别用,表示S吗?
o第3页,共19页,2024年2月25日,星期天ABOSS第4页,共19页,2024年2月25日,星期天BAOSSS第5页,共19页,2024年2月25日,星期天定理
(微积分基本定理)
牛顿—莱布尼茨公式
如果是区间[a,b]上的连续函数,并且
,则其中F(x)叫f(x)的原函数,f(x)叫F(x)的导函数。第6页,共19页,2024年2月25日,星期天(三)活学活用:利用微积分基本定理解决前面的问题找出f(x)的原函数是关健解(1)∵解(2)∵(x4)′=4x3∴(x4)′=x3即(x4)′=x3第7页,共19页,2024年2月25日,星期天(四)自主探究
请利用微积分基本定理解决下面的问题
解:(1)∵第8页,共19页,2024年2月25日,星期天(2)解:∵(3)解:∵第9页,共19页,2024年2月25日,星期天(五)知识延伸抢答题:第10页,共19页,2024年2月25日,星期天我们发现:(1)定积分的值可取正值也可取负值,还可以是0;(2)当曲边梯形位于x轴上方时,定积分的值取正值;(3)当曲边梯形位于x轴下方时,定积分的值取负值;第11页,共19页,2024年2月25日,星期天定积分的几何意义:Oxyaby
f(x)x=a、x=b与x轴所围成的曲边梯形的面积。第12页,共19页,2024年2月25日,星期天
当f(x)
0时,由y
f(x)、x
a、x
b
与x
轴所围成的曲边梯形位于x
轴的下方,xyO=-.aby
f(x)y
-f(x)=-S上述曲边梯形面积的负值。
=-S第13页,共19页,2024年2月25日,星期天定积分的几何意义:
在几何上表示由y
f(x)、x
a、x
b
与x
轴所围成的曲边图形面积的代数和(即x轴上方的面积减去x轴下方的面积).第14页,共19页,2024年2月25日,星期天牛顿牛顿,是英国伟大的数学家、物理学家、天文学家和自然哲学家。1642年12月25日生于英格兰林肯郡格兰瑟姆附近的沃尔索普村,1727年3月20日在伦敦病逝。
牛顿1661年入英国剑桥大学三一学院,1665年获文学士学位。随后两年在家乡躲避瘟疫。这两年里,他制定了一生大多数重要科学创造的蓝图。1667年回剑桥后当选为三一学院院委,次年获硕士学位。1669年任卢卡斯教授直到1701年。1696年任皇家造币厂监督,并移居伦敦。1703年任英国皇家学会会长。1706年受女王安娜封爵。他晚年潜心于自然哲学与神学。
牛顿在科学上最卓越的贡献是微积分和经典力学的创建。返回第15页,共19页,2024年2月25日,星期天莱布尼茨莱布尼茨,德国数学家、哲学家,和牛顿同为微积分的创始人;1646年7月1日生于莱比锡,1716年11月14日卒于德国的汉诺威。
他父亲是莱比锡大学伦理学教授,家庭丰富的藏书引起他广泛的兴趣。1661年入莱比锡大学学习法律,又曾到耶拿大学学习几何,1666年在纽伦堡阿尔特多夫取得法学博士学位。他当时写的论文《论组合的技巧》已含有数理逻辑的早期思想,后来的工作使他成为数理逻辑的创始人。
1667年他投身外交界,曾到欧洲各国游历。1676年到汉诺威,任腓特烈公爵顾问及图书馆的馆长,并常居汉诺威,直到去世。
莱布尼茨的多才多艺在历史上很少有人能和他相比,他的著作包括数学、历史、语言、生物、地质、机械、物理、法律、外交等各个方面。返回第16页,共19页,2024年2月25日,星期天(六)小结(1)微积分基本定理的内容及推导(2)微积分基本定理的简单应用第17页,共19页,2024年2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南大学《医学人文素养》2023-2024学年第二学期期末试卷
- 山东劳动职业技术学院《学前教育名著选读》2023-2024学年第二学期期末试卷
- 河南财政金融学院《英语精读1》2023-2024学年第一学期期末试卷
- 燕京理工学院《ERP沙盘综合模拟实验》2023-2024学年第二学期期末试卷
- 喀什职业技术学院《金融发展与实践》2023-2024学年第二学期期末试卷
- 濮阳科技职业学院《英语写作1》2023-2024学年第一学期期末试卷
- 邯郸幼儿师范高等专科学校《钢结构设计基本原理》2023-2024学年第二学期期末试卷
- 江西师范大学科学技术学院《音乐与儿童歌曲赏析四》2023-2024学年第二学期期末试卷
- 贵阳职业技术学院《法医学理论》2023-2024学年第一学期期末试卷
- 家政公司家政服务合同
- 重大危险源识别表
- 《上海市奉贤区小区机动车停放管理工作调查报告》4300字
- 申请结婚报告表实用文档
- 《广东省普通高中学生档案》模板
- 高职院校与区域经济协调发展研究
- YY/T 1492-2016心肺转流系统表面涂层产品通用要求
- YS/T 1028.3-2015磷酸铁锂化学分析方法第3部分:磷量的测定磷钼酸喹啉称量法
- JJF 1104-2003国家计量检定系统表编写规则
- GB/T 665-2007化学试剂五水合硫酸铜(Ⅱ)(硫酸铜)
- GB/T 17891-1999优质稻谷
- GA 588-2012消防产品现场检查判定规则
评论
0/150
提交评论