版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题2.3勾股定理中的经典题型(十大题型)重难点题型归纳1.最短路径问题与翻折问题【题型1与长方形有关的最短路径问题】【题型2与圆柱有关的最短路径问题】【题型3与台阶有关的最短路径问题】【题型4将军饮马与最短路径问题】【题型5几何图形中翻折、旋转问题】实际应用【题型1梯子滑落问题】【题型2树枝旗子折断问题】【题型3航海是否有影响问题】【题型4风吹荷花问题】【题型5垂美四边形问题】【方法技巧】长方体最短路径基本模型如下:几何体中最短路径基本模型如下:基本思路:将立体图形展开成平面图形,利用两点之间线段最短确定最短路线,构造直角三角形,利用勾股定理求解垂美四边形(1)构造直角三角形解决问题;(2)垂美四边形【定义】对角线互相垂直的四边形叫做垂美四边形.【结论】如图,四边形ABCD的对角线AC⊥BD,则①AB²+CD²=AD²+BC².②S四ABCD=AC·BD【题型1与长方体有关的最短路径问题】【典例1】(2023•丹江口市模拟)如图,地面上有一个长方体盒子,一只蚂蚁在这个长方体盒子的顶点A处,盒子的顶点C′处有一小块糖粒,蚂蚁要沿着这个盒子的表面A处爬到C′处吃这块糖粒,已知盒子的长和宽为均为20cm,高为30cm,则蚂蚁爬行的最短距离为()cm.A.10 B.50 C.10 D.70【变式1-1】(2022秋•新都区期末)一个长方体盒子的长、宽、高分别为15cm,10cm,20cm,点B离点C的距离是5cm,一只蚂蚁想从盒底的点A沿盒的表面爬到点B,蚂蚁爬行的最短路程是()A.10cm B.25cm C.5cm D.5cm【变式1-2】(2023春•光泽县期中)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5 B.25 C. D.35【变式1-3】(2023春•灵丘县月考)如图,正方体的棱长为3cm,已知点B与点C之间的距离为1cm,一只蚂蚁沿着正方体的表面从点A爬到点C,需要爬行的最短距离为()A. B.5cm C.4cm D.【变式1-4】(2022秋•莲湖区期末)如图,正方体盒子的棱长为2,M为EH的中点,现有一只蚂蚁位于点B处,它想沿正方体的表面爬行到点M处获取食物,则蚂蚁需爬行的最短路程为()A. B. C. D.【变式1-5】(2022秋•汝阳县期末)如图,在长为3,宽为2,高为1的长方体中,一只蚂蚁从顶点A出发沿着长方体的表面爬行到顶点B,那么它爬行的最短路程是()A. B. C. D.【变式1-7】(2022秋•平昌县期末)如图是一个长方体盒子,其长,宽、高分别为4,2,9,用一根细线绕侧面绑在点A,B处,不计线头,细线的最短长度为()A.12 B.15 C.18 D.21【变式1-8】(2023•陇县三模)如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为()厘米.A.8 B.10 C.12 D.13【变式1-10】(2022春•五华区期末)如图,正方体的棱长为2cm,点B为一条棱的中点.蚂蚁在正方体表面爬行,从点A爬到点B的最短路程是()A.cm B.4cm C.cm D.5cm【题型2与圆柱有关的最短路径问题】【典例2】(2023春•防城区期中)如图,一圆柱高BC=12πcm,底面周长是16πcm,P为BC的中点,一只蚂蚁从点A沿圆柱外壁爬到点P处吃食,要爬行的最短路程是()A.12πcm B.11πcm C.10πcm D.9πcm【变式2-1】(2023春•德州期中)如图,圆柱形玻璃容器高18cm,底面圆的周长为48cm,在外侧底部点A处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧顶端的点B处有一只苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度()A.52cm B.30cm C. D.60cm【变式2-2】(2023春•夏津县期中)葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是50cm,当一段葛藤绕树干盘旋2圈升高为2.4m时,这段葛藤的长是()m.A.3 B.2.6 C.2.8 D.2.5【变式2-3】(2023春•东港区校级月考)如图所示,已知圆柱的底面周长为36,高AB=5,P点位于圆周顶面处,小虫在圆柱侧面爬行,从A点爬到P点,然后再爬回C点,则小虫爬行的最短路程为()A.26 B.13+ C.13 D.2【变式2-4】(2023春•富顺县校级月考)如图,一个底面圆周长为24cm,高为9cm的圆柱体,一只蚂蚁从距离上边缘4cm的点A沿侧面爬行到相对的底面上的点B所经过的最短路线长为()A.cm B.15cm C.14cm D.13cm【变式3-5】(2022秋•蒲城县期末)今年9月23日是第五个中国农民丰收节,小彬用3D打印机制作了一个底面周长为20cm,高为20cm的圆柱粮仓模型.如图BC是底面直径,AB是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A,C两点(接头不计),则装饰带的长度最短为()A.20πcm B.40πcm C. D.【变式2-6】(2023春•宣化区期中)如图,圆柱底面半径为,高为18cm,点A、B分别是圆柱两底面圆周上的点,且点B在点A的正上方,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为()A.21cm B.24cm C.30cm D.32cm【变式2-7】(2023春•随县期末)如图是学校艺术馆中的柱子,高4.5m.为迎接艺术节的到来,工作人员用一条花带从柱底向柱顶均匀地缠绕3圈,一直缠到起点的正上方为止.若柱子的底面周长是2m,则这条花带至少需要m.【题型3与台阶有关的最短路径问题】【典例3】(2023春•连山区期末)如图是楼梯的一部分,若AD=2,BE=1,AE=3,一只蚂蚁在A处发现C处有一块糖,则这只蚂蚁吃到糖所走的最短路程为()A. B.3 C. D.2【变式3-1】(2022春•郾城区期末)如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()cm.A.10 B.50 C.120 D.130【变式3-2】(2023春•西塞山区期中)如图,在一个长为20m,宽为16m的矩形草地上放着一根长方体木块,已知该木块的较长边和场地宽AD平行,横截面是边长为2m的正方形,一只蚂蚁从点A处爬过木块到达点C处需要走的最短路程是m.【变式3-3】(2022秋•叙州区期末)如图是一个三级台阶,它的每一级的长、宽、高分别是4米、0.7米、0.3米,A、B是这个台阶上两个相对的顶点,A点处有一只蚂蚁,它想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.【题型4将军饮马与最短路径问题】【典例4】(2022秋•辉县市校级期末)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm.在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为()cm.A.15 B. C.12 D.18【变式4-1】(2022春•吴江区期末)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则该蚂蚁要吃到饭粒需爬行的最短路径长是()A.13cm B.3cm C.cm D.2cm【变式4-2】(2023春•临潼区期末)如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【变式4-3】(2022秋•牡丹区月考)如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为2.5m的半圆,其边缘AB=CD=20m.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为()(π取3)m.A.30 B.28 C.25 D.22【变式4-4】(2022秋•雁峰区校级期末)如图,圆柱形玻璃杯高为11cm,底面周长为30cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的爬行最短路线长为(杯壁厚度不计)()A.12cm B.17cm C.20cm D.25cm【变式4-5】(2022秋•郫都区期末)如图,圆柱形玻璃杯高为22cm,底面周长为30cm,在杯内壁离杯上沿3cm的点B处粘有一粒面包渣,此时一只蚂蚁正好在杯外壁,离杯底5cm与面包渣相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【题型5几何图形中翻折、旋转问题】【典例5】(2022秋•大东区校级期末)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.6【变式5-1】(2022春•安乡县期中)如图,在△ABC中,∠ACB=90°,AC=12,BC=10,点D为BC的中点,点E为AC边上一动点,连接DE.将△CDE沿DE折叠,点C的对应点为点C'.若△AEC'为直角三角形,则AE的长为.【变式5-2】(2023春•长沙期末)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.【变式5-3】(2022秋•绥德县期中)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.【变式5-4】(2020秋•海宁市期中)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D为BC上一点,将△ABD沿AD折叠至△AB′D,AB′交线段CD于点E.当△B′DE是直角三角形时,点D到AB的距离等于.【变式5-5】(2020•浙江自主招生)将一直径为25cm的圆形纸片(如图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体形状的纸盒(如图③),则这样的纸盒体积最大为cm3.【变式5-6】(2022秋•和平区期中)一长方体容器(如图1),长、宽均为2,高为8,里面盛有水,水面高为5,若沿底面一棱进行旋转倾斜,倾斜后的长方体容器的主视图如图2所示,若倾斜容器使水恰好倒出容器,则CD=.【题型6梯子滑落问题】【典例6】(2023春•随县期末)如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?【变式6-1】(2023春•郧阳区期末)如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点0.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.【变式6-3】(2022秋•雁塔区校级期中)如图,一架13米长的梯子AB斜靠在墙上,刚好梯顶A与地面的距离AO为12米.如果梯子底部水平滑动的距离BB′为3米,求梯顶下滑的距离AA′为多少米?【变式6-4】(2023春•淮南期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为()A.0.7米 B.1.5米 C.2.2米 D.2.4米【变式6-5】(2023春•庐阳区校级期中)如图,梯子AB斜靠在一竖直的墙AO上,这时BO为7m.如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移8m,则梯子AB的长为()A.24 B.25 C.15 D.20【变式6-6】(2022秋•黔江区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A'D为1.5m,则小巷的宽为()A.2.4m B.2m C.2.5m D.2.7m【题型7树枝旗子折断问题】【典例7-1】(2023春•鹤山市校级期中)在一棵树的10米高的B处有两只猴子.一只猴子爬下树走到离树20米的池塘的A处.另一只爬到树顶D后直接跃到A处.距离以直线计算.如果两只猴子所经过的距离相等.则这棵树高多少米?【典例7-2】(2023春•南宁期中)如图1,同学们想测量旗杆的高度.他们发现系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.小明和小亮同学应用勾股定理分别提出解决这个问题的方案如下:小明:①测量出绳子垂直落地后还剩余1.5米,如图1;②把绳子拉直,绳子末端在地面上离旗杆底部6米,如图2.小亮:先在旗杆底端的绳子上打了一个结,然后举起绳结拉到如图3点D处.(1)请你按小明的方案求出旗杆的高度;(2)已知小亮举起绳结离旗杆6.75米远,此时绳结离地面多高?【变式7-1】(2023春•东港区校级期中)由于大风,山坡上的一棵树甲被从A点处拦腰折断,如图所示,其树顶端恰好落在另一棵树乙的根部C处,已知AB=4米,BC=13米,两棵树的水平距离为12米,求这棵树原来的高度.【变式7-2】(2021秋•临渭区期末)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.【变式7-3】(2022秋•常州期末)数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端A的绳子沿旗杆垂到地面时,测得多出部分BC的长为2m(如图1),再将绳子拉直(如图2),测得绳子末端的位置D到旗杆底部B的距离为6m,求旗杆AB的长.【变式7-4】(2022秋•城关区期末)如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8m,当他把绳子下端拉开4m后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?【题型8航海是否有影响问题】【典例8-1】(2023春•黄冈期中)如图所示,某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【典例8-2】(2023春•邢台期中)如图,经过A村和B村(将A,B村看成直线l上的点)的笔直公路1旁有一块山地正在开发,现需要在C处进行爆破.已知C处与A村的距离为900米,C处与B村的距离为1200米,且AC⊥BC.(1)求A,B两村之间的距离;(2)为了安全起见,爆破点C周围半径750米范围内不得进入,在进行爆破时,公路AB段是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由.【变式8-1】(2023春•千山区期中)如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,6分钟后同时到达C处将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西23°.(1)求甲巡逻艇的航行方向;(2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,3分钟后甲、乙两艘巡逻艇相距多少海里?【变式8-2】(2023•灞桥区校级模拟)如图,海中有一小岛P,它的周围12海里内有暗礁,渔船跟踪鱼群由西向东航行,在M处测得小岛P在北偏东60°方向上,航行16海里到N处,这时测得小岛P在北偏东30°方向上.如果渔船不改变航线继续向东航行,是否有触礁危险,并说明理由.【变式8-3】(2022春•天元区期中)某岛C周围4海里内有暗礁,一轮船沿正东方向航行,在A处测得该岛在东偏南15°处,继续航行10海里到达B处,又测得该岛位于东偏南30°处,若该船不改变航向,有无触礁危险?【变式8-4】(2021•黄州区校级自主招生)南海诸岛自古以来都是中国的领土,4月12日,中央军委在南海海域隆重举行海上阅兵,军委主席习近平登上长沙舰检阅海军舰艇编队,包括辽宁号航母在内的48艘舰艇参加了阅兵仪式.如图,A、B是两处海港,其中A在B东偏南30〫方向千米处,辽宁号航母从海港A出发,沿东偏北45〫方向,以15千米/小时的速度匀速航行,两小时后,长沙舰从海港B出发,沿东偏北15〫的方向匀速航行,两舰恰好同时到达阅兵地点C.(1)长沙舰从海港出发航行到达阅兵地点用了多少时间?(2)求长沙舰的航行速度.(结果保留根号)【变式8-5】(2023春•青阳县期末)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.【变式8-6】(2022春•大方县期中)如图第4号台风“黑格比”的中心于2020年8月5日下午位于浙江省绍兴市境内的B处,最大风力有9级(23m/s),中心最低气压为990百帕,台风中心沿大约东北(BC)方向以25km/h的速度向D移动在距离B地250km的正北方有一A地,已知A地到BC的距离AD=70km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心70km的圆形区域内都将有受到台风破坏的危险,正在D点休闲的游人在接到台风警报后的几个小时内撤离才可脱离危险?【题型9风吹荷花问题】【典例9】(2022秋•南关区校级期末)如图,水池中离岸边D点4米的C处,直立长着一根芦苇,出水部分BC的长是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网服务备案管理规则
- 犹太教堂防水施工墙面协议
- 研发经理解除聘用合同分析
- 图书馆环境卫生工招聘合同
- 2024年网络游戏运营合同范本
- 2024年物联网技术应用开发与合作合同
- 地下排水桩基夯扩桩施工合同
- 2025年酒水新品研发与技术合作合同2篇
- 2025版智能家居系统解决方案供货与安装合同
- 2024年瑜伽馆学员培训协议3篇
- 脑卒中偏瘫患者早期康复护理现状(一)
- 模特的基础训练
- 急救技术-洗胃术 (2)
- 药品招商流程
- 混凝土配合比检测报告
- 100道递等式计算(能巧算得要巧算)
- 【2019年整理】园林景观设计费取费标准
- 完整word版,ETS5使用教程
- 《血流动力学监测》PPT课件.ppt
- 2018年秋季人教版十一册数学第7、8单元测试卷
- 学生作业提交与批阅系统的设计与实现探讨
评论
0/150
提交评论