汽轮机技术论文_第1页
汽轮机技术论文_第2页
汽轮机技术论文_第3页
汽轮机技术论文_第4页
汽轮机技术论文_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版下载后可任意编辑和复制第第页汽轮机技术论文

一、项目提出的背景

1.1汽轮机300MW汽轮机电液掌握系统

洛阳首阳山电厂二期2x汽轮机300MW汽轮机为日立公司TCDF-33.5亚临界压力、中间再热、双缸双排汽、冲动、凝汽式汽轮机,于1995年12月和1996年3月投产。汽轮机调整系统为数字电液调整(D—EHG),采纳低压汽轮机油电液调整。执行机构的设置为1个高压油动机带动4个高压调速汽门,2个中压油动机带动2个中压调速汽门。每个油动机由一个电液伺服阀掌握,1台汽轮机的3个油动机(CV、左右侧ICV)的电液伺服阀均为日本制造的Abex415型电液伺服阀。掌握油和润滑油均采纳同一油源即主油箱内的N32号防锈汽轮机油,在掌握油路上安装一精密滤网(精度为51μm)。

1.2存在问题

首阳LU电厂3、4号机组从1995年试运开头,机组启动冲转过程中常常消失油动机突然不动的现象,经检查掌握系统正常,信号传输正常,均为伺服阀故障所致,伺服阀更换后调整系统恢复正常。机组在带负荷稳定运行和中压调整门活动试验日寸,也消失油动机不动的状况及油动机全开或全关的现象,检查均为伺服阀故障。

伺服阀消失故障必需进行更换,而这种调整系统设计形式伺服阀无法隔离,只能被迫停机更换。首阳山电厂3、4号机组由于伺服阀缘由造成的停机:2000年分别为8次、5次,2022年分别为1次、2次;截止到2022年6月仅3号机组由于伺服阀缘由造成的停机就达4次。对拆下来的故障伺服阀进行检查,发觉其内部滤芯堵塞、喷嘴堵塞、滑阀卡涩。伺服阀内部滤芯堵塞引起伺服阀前置级掌握压力过低,不能掌握伺眼阀的第2级滑阀运动,致使油动机拒动(对掌握信号不响应);喷嘴堵塞油动机关闭;伺服阀卡涩,使油动机保持在全开或全关位置。油质污染是造成上述故障的主要缘由,油质污染造成伺阀卡涩的故障占伺服阀故障的85%[1]。

1.3油质状况及防止伺服阀卡涩的措施

由于3、4号机组试运时就常常发生伺服阀卡涩,移交生产后首阳山电厂对油质就特别重视,1996年成立了滤油班加强滤油管理,提高油质清洁度。伺服阀卡涩频率比试运时降低了很多,但次数还比较多。

日立《汽轮机维护手册》标明,伺服阀可在等于或低于NASl638第7级污染程度的油质中良好工作。二期油系统管路设计为套管形式,滤网后向伺服阀供油的掌握油管位于润滑油回油管中无法取样监测,只能监视润滑油的清洁度。依据旧的《电厂用运行中汽轮机油质量标准》[2]中对油中机械杂质的要求是外观

目视无杂质,1996年至今,每周化验3、4号机润滑油,油样透亮     、无杂质(有一段时间含少量水分,极少检查有杂质)。新的《电厂用运行中汽轮机油质量标准》[3]除要求外观目视油中无机械杂质外,对油质提出了更高要求:250MW及以上机组要求测试颗粒度,参考国外标准极限值NASl638规定8-9级或MOOG规定6级;有的汽轮机300MW汽轮机润滑系统和调速系统共用一个油箱,也用矿物汽轮机油,此时油中颗粒度指标应按制造厂供应的指标,测试周期为每6个月1次。2022年对3、4号机组汽轮机油取样讲行颗粒度分析,运行油颗粒度均合格(见表1)。

伺服阀卡涩引起停机,对机组平安性影响特别大,且伺服阀卡涩引起机组非方案停运影响电厂的经济性。首阳山电厂实行了以下临时措施:

(1)定期更换伺服阀,超过3个月后遇到机组停机进行更换;(2)定期切换掌握油滤芯,并对其清洗;(3)滤油机连续运行时提高油质清洁度;(4)加强油质检验。从运行看,因伺服阀卡涩引起停机次数有所削减。但尚无从根本上解决问题,为此经分析、讨论提出一系列改造设想,如“采纳独立的掌握油源”、“不停机更换伺服阀”等,但由于系统改造量大、改造费用高或技术上不行行而均放弃。经多方分析、调研,提出将伺服阀改型,选用抗污染性能较强的DDV阀的方案。

二、Abex415型电液伺服阀

2.1工作原理

电液伺服阀是电液转换元件,又是功率放大元件,它把微小的电气信号转换成大功率的液压能输出,掌握调速汽门的阀位。它的性能优劣对电液调整系统影响很大,是电液调整系统的核心和关键。该伺服阀为射流管式力反馈二级电液伺服阀,为四通阀门,其作用是掌握进出液压系统的油量,使其与输入的电信号成比例,主要由阀体、转距电动机(线圈、电枢)、永久性磁铁、第1级射流管、压力反馈弹簧、第2级滑阀、“O”形环、外壳等组成(见图1)。

其工作原理:少量液压油从油源流经滤网,然后流经连接在力矩马达转子上的软管,最终从喷油嘴流出。从喷嘴出来的油喷到2根集油管上,2根油管分别连于滑阀的两端。无偏移时,每个集油管产生约二分之一的管道压力,因而无差压产生,所以滑阀平衡。电流流过力矩马达时即产生肯定力矩,使力矩马达的转子转动一个小角度。若转子为反时针转动,则喷油管向右移动,引起更多的油喷到右边的集油管上,即产生压力,而左边集油管产生较小的压力。这样滑阀上消失压差,引起滑阀向左移动。滑阀始终向左移动直到回位弹簧产生的反力与力矩

马达产生的力相等为止。这时滑阀处于一新的平衡位置。第2级电流成正比。如电流极性相反,则滑阀移到另一侧。

2.2主要特点

(1)该阀为射流管式力反馈二级放大电液伺服阀;(2)低滞环,高辨别率;(3)灵敏度高,线性好且掌握精度高;(4)掌握油采纳润滑油同一油源即主油箱内的N32号防锈汽轮机油,对油质要求高且抗污染力量差。

2.3主要技术规范

伺服阀的型号、。

三、DDV伺服阀技术介绍

3.1工作原理

DDV伺服阀由集成块电子线路、直线马达、阀芯、阀套等几部分构成(见图

2)。其工作原理为:一个电指令信号施加到阀芯位置掌握器集成块上,电子线路在直线马达产生一个脉宽调制(PWM)电流,震荡器使阀芯位置传感器(LVDT)励磁。经解调后的阀芯位置信号和指令位置信号进行比较,阀芯位置掌握器产生一个电流输出给力矩马达,力矩马达驱动阀芯,始终使阀芯移动到指令位置。阀芯的位置与指令信号大小成正比。伺服阀的实际流量Q是阀芯位置与通过阀芯计量边的压力降的函数。

永磁直线马达结构。其工作原理:直线马达是一个永磁的差动马达,永磁供应部分所需的磁力,直线马达所需的电流明显低于同量级的比例电磁线圈所需的电流。直线马达具有中性的中位,因

为它一偏离中位就会产生力和行程,力和行程与电流成正比,,自线马达在向外伸出的过程巾必需克服高刚度弹簧所产生的对中力与外部的附加力(即液动力及由污染引起的摩擦力)。在直线马达返回中位时,对中弹簧力是和马达产生的力同方向的,等于给阀芯供应了附加的驱动力,因此使DDV伺服阀对污染的敏感性大为降低。直线马达借助对,卜弹簧回中,不需外加电流。停电、电缆损坏或紧急停机状况下,伺服阀均能自行回中,无需外力推动。

3.2主要特点

DDV阀是MOOG公司最新研制胜利的新型电液伺服阀,目前已由

MOOGGmbH(德国)公司进行批量生产。它是一种直接驱动式伺服阀,用集成电

路实现阀芯位置的闭环掌握。阀芯的驱动装置是永磁直线力马达,对中弹簧使阀芯保持在中位,直线力马达克服弹簧的对中力使阀芯在2个方向都可偏离中位,平衡在一个新的位置,这样就解决了比例电磁线圈只能在一个方向产:生力的不足之处。阀芯位置闭环掌握电子线路与脉宽调制(PWM)驱动电子线路固化为一块集成块,用特别的连接技术固定在伺服阀内,因此该伺服阀无需配套电子装置就能对其进行掌握。

DDV阀与“射流管式伺服阀”(或“双喷嘴力反馈两级伺服阀”)相比,其最大特点是:(1)无液压前置级;(2)用大功率的直线力马达替代丁小功率的力矩马达;

(3)用先进的集成块与微型位置传感器替代了工艺简单的机械反馈装置一力反馈杆与弹簧管;(4)低的滞环,高的辨别率;(5)保持了带前置级的两级伺服阀的基本性能与技术指标;(6)对掌握油质抗污染力量大大提高;(7)降低运行维护成本。

3.3主要技术参数

DDV伺服阀的型号、参数

四、技术改造方案及设备安装调试

通过技术改造实现的目标:(1)彻底解决伺服阀卡涩;(2)不转变调整系统的调整特性;(3)具有

高的牢靠性、平安性;(4)改造量小。

改造方案:(1)将汽轮机的CV、左右侧ICV伺服阀均改为DDV型伺服阀。

(2)机械方面:因2种伺服阀外形、开孔尺寸及安装尺寸不同,在伺服阀与执行器间加装连接用的油路集成块,并在集成块上安装进油滤网。(3)热工方面:安装电源及信号转换箱,接受HITASS的D-EHG掌握信号(±8mA)和2路220V沟通电源(一路UPS,一路保安段),将掌握信号(±8mA)变为电压信号(±10V)作为DDV的掌握信号,沟通220V转换为直流24V作为DDV的电源。

通过静止试验表明,调整系统静态特性达到与改型前试验数值基本全都,表明伺服阀改为DDV阀后,整个掌握系统调整方法、调整性能无变化。改型前后静态试验数据

为检验伺服阀改为DDV阀后是否平安,能否保证失电状况下执行器关闭,进行了失电试验:加一开启信号,执行器开启;就地拔去信号接头,执行器自行关闭。

五、运行实践及经济分析

4号机组自2022年9月运行至今,机组启停多次,调整系统牢靠稳定,没有发生一次因伺服阀卡涩而造成机组的非方案停运。

技术改造后对机组平安、经济方面的影响。平安性:避开了伺服阀卡涩,极大地提高了机组的平安性、牢靠性且机组非方案停运次数大大削减;经济性:技术改造除增加发电量外,每年约可节省费用74万元。技术改造费为每台机20万元,2台机组共40万元。1台机组1年就可收回2台机组的全部投资,经济效益显著。

六、结论

实际运行状况表明:该项技术改造在于汽轮机电液掌握系统与润滑油系统同用一个油源,提高了适用性及抗污染力量,解决了电液伺服阀卡涩问题,大大削减了机组非方案停运次数,有明显的经济效益。可在同类日立00MW汽轮机的电液掌握系统推广、实施。

目前国内机组电液掌握系统

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论