固体矿产储量估算方法_第1页
固体矿产储量估算方法_第2页
固体矿产储量估算方法_第3页
固体矿产储量估算方法_第4页
固体矿产储量估算方法_第5页
已阅读5页,还剩105页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于固体矿产储量估算方法提纲一、储量估算的一般概念二、储量估算方法的选择三、工业指标四、储量估算参数的确定五、矿体圈定六、资源储量类型和块段划分七、伴生组分的储量估算

第2页,共110页,2024年2月25日,星期天一、储量估算的一般概念(一)储量估算是矿产勘查工作的总结(二)储量估算贯穿于矿产地质勘查----矿山开采的各个阶段(三)矿产储量的单位(四)储量估算一般程序第3页,共110页,2024年2月25日,星期天一、储量估算的一般概念

(一)储量估算是矿产勘查工作的总结矿产储量指矿产在地下的埋藏数量。矿产勘查的基本仼务之一,就是查明矿产在地下的形态、产状、规模、数量和质量。勘查工作采用各种手段和技术方法以获取储量估算所需的各项原始资料和数据,所以,储量估算工作是地质工作的总结,是对勘查工作部署是否合理和各项技术工作质量指标是否符合规范及储量估算要求的检验。第4页,共110页,2024年2月25日,星期天一、储量估算的一般概念

(二)储量估算贯穿于矿产地质勘查----矿山开采的各个阶段各勘查设计阶段进行储量预算需要经过两年以上勘查阶段的矿区根据需要进行年度储量估算勘查工作结束提交报告时进行全面正式的储量估算,提交有关部门审查矿山正常生产过程中对“三级矿量”的储量估算矿山建设设计或技改需要进行的储量估算矿山转让,资源评估等商业行为需进行储量估算等第5页,共110页,2024年2月25日,星期天一、储量估算的一般概念

(三)矿产储量的单位

1、储量单位:一般用吨(t)万吨(kt)、千克(kg)、克拉(kr)及立米(m3)等表示。

2、计量单位:一,般金属矿产的金属含量用“10-2”(百分比%)表示,金银贵金属用“10-6”(即过去的g∕t)表示等。

3、有色金属、贵金属等常以金属储量表示,黑色金属、非金属以矿石储量表示。第6页,共110页,2024年2月25日,星期天一、储量估算的一般概念

(四)储量估算一般程序

1、编制储量计算必须的综合图件:如地表或坑道采样平面图、剖面图、中段平面图、储量估算投影图等。

2、编制有关表册:如基本分析成果表、组合分析成果表、体重、湿度测定成果表、探矿工程、地质剖面测量成果表、钻孔测斜结果表等(各种数据库的建立)

3、在各个探矿工程中按工业指标及矿体圈定原则圈定矿体,计算单工程矿体平均品位、厚度(根据需要分别计算视厚度、真厚度、水平厚度、铅垂厚度等)。

4、在储量估算剖面图(或地质剖面图)、储量估算中段平面图(或中段地质图)上按矿体圈定原则连接矿体,在完成矿区的全部矿体圈定、并采用各种有效方法经对比验证确定了最佳连接方案后,按有关原则对矿体进行编号。

5、在储量估算水平投影图或垂直纵投影图上划分储量块段(根据工程控制程度及矿体形态和工程对应程度等因素进行划分)及资源储量类型。

6、计算块段矿体面积:剖面图上矿体面积、或矿体水平(垂直)投影面积。

7、计算块段平均厚度:包括真厚度、水平厚度、铅垂厚度。

8、计算块段矿体平均品位。

9、计算块段矿体体积。10、计算矿石体重(根据不同情况分别采用块段、矿体平均体重、矿区平均体重,或不同矿石类型、品级的平均体重等)。

11、计算块段矿体矿石量。

12、计算块段矿体金属量。

13、对各矿体、各资源储量类型的矿石量、金属储量、平均品位及比例进行统计汇总。第7页,共110页,2024年2月25日,星期天二、储量估算方法的选择目录(一)垂直平行断面法(水平断面法)(二)地质块段法(三)综合法第8页,共110页,2024年2月25日,星期天二、储量估算方法的选择

受各种地质构造因素影响,自然界金属、非金属矿体的埋藏条件及矿体形态、产状是很复杂的。传统的储量估算方法依据相应的矿产工业指标,按各个探矿工程中样品分析结果进行圈定,然后把各个单工程中圈定的矿体连接成较规则的近似的几何形体代替真实的矿体,并估算其体积和矿石量、金属量。由于矿体形态、产状受不同地质条件控制,对不同形态、产状的矿体需采用不同的勘探方法,因而就相应产生了不同的储量估算方法。传统的储量估算方法常用的有垂直平行断面法、水平断面法、地质块段法以及算术平均法、等值线法、等高线法等。储量估算方法的选择主要取决于矿体地质特征和勘探方法、工程控制程度,分布均匀程度及工程手段等因素。下面简要介绍最常用的方法。第9页,共110页,2024年2月25日,星期天二、储量估算方法的选择

(一)垂直平行断面法(水平断面法)这种方法是利用平行勘探线剖面或水平断面把矿体划分为不同的区块,然后在区块内按工程控制程度、矿体形态和矿石类型等因素划为若干个小块段对其进行储量估算。各块段储量总和即为该矿体全部储量。第10页,共110页,2024年2月25日,星期天二、储量估算方法的选择

对走向、倾向方向有一定延展规模的层状、似层状,透镜状、脉状矿体,采用垂直平行剖面法系统布置工程进行勘探的(原则上要求各种探矿工程都布置在剖面线上,槽探及穿脉平巷掘进方向须平行勘探线布置),一般都尽可能采用垂直平行剖面法估算储量。这种方法的主要优点是:储量估算方法与勘探方法一致,储量估量剖面图及投影图能充分反映矿体的构造形态特征和相应的探矿工程对矿体的控制情况;估算方法程序简便、合理,储量估量精度高、可靠。这种方法的主要缺点是,当探矿工程或钻孔弯曲偏线时给估算结果带来一定的误差。对急倾斜矿体以坑道为主要手段采用水平断面法进行勘探的矿床,相应采用水平断面法估算储量。对剖面线不平行的矿区,采用不平行断面法。第11页,共110页,2024年2月25日,星期天二、储量估算方法的选择

(二)地质块段法该方法的原理是将全部探矿工程中的矿体,按见矿位置投影到一个平面上(垂直或水平的),然后按照工程控制程度、资源储量类型、矿体形态、矿石类型、品级等因素划分为若干小块段,并把这些块段视为理想的板块状,然后计算这些“板块”的平均厚度和平均品位、投影面积,据此计算其体积、矿石量和金属储量。地质块段法按矿体的倾角不同又可分为垂直投影地质块段法(适用于倾角较陡的矿体)和水平投影地质块段法(适用于倾角较缓的矿体)。第12页,共110页,2024年2月25日,星期天二、储量估算方法的选择当矿体厚度、品位较稳定、变化小,矿体形态较简单、产状较稳定、工程分布较均匀的条件下采用地质块段法,可获得较好的结果。其优点是不受工程偏线影响,估算方法简单,品位、厚度等参数计算一般采用算术平均法。缺点是当矿体厚度、品位变化大,形态较复杂,矿体中有夹石,以及工程分布不均匀等情况时储量估算误差大。当出现上述情况时,往往把块段划分至四边形或三角形的小块段,并用加权法计算块段平均厚度和品位,以减少误差。第13页,共110页,2024年2月25日,星期天二、储量估算方法的选择(三)综合法在同一矿床(或矿体)中,可根据需要,以一种方法为基础,结合采用其他方法进行储量估算。一般对系统工程控制的完整块段用垂直断面法,边缘地段工程的系统性、对应差,可采用地质块段法。第14页,共110页,2024年2月25日,星期天三、工业指标目录

(一)工业指标的确定(二)工业指标的内容

1、矿石质量指标

2、开采技术条件指标第15页,共110页,2024年2月25日,星期天三、工业指标

(一)工业指标的确定工业指标是在当前的市场和技术经济条件下,工业部门对矿石的质量和矿床开采条件的要求;是圈定矿体、估算储量的基准参数,也是评估矿床工业价值的依据。矿产普查阶段的工业指标,可根据矿床情况采用规范中一般工业指标;详查—勘探阶段的工业指标一般由地勘单位提出工业指标建议书,经设计部门进行技术经济论证,由矿山企业确定。生产矿山储量核实工业指标,可采用矿山设计中确定的指标,矿山生产一定阶段后,随着市场价格、采矿规模、选、冶工艺指标等生产实际条件的变化,原工业指标己不符合生产情况,应调整工业指标使其符合实际。第16页,共110页,2024年2月25日,星期天三、工业指标(二)工业指标的内容1、矿石质量指标金属矿产工业指标的主要内容有:边界品位、最低工业品位、米百分值(米克/吨值)、矿床平均品位、伴生有用组份及有害杂质允许含量等。工业指标的确定原则:一是要符合矿床地质规律,合理的、最大限度的综合利用地下资源;二是矿山企业取得一定的经济效益;三是国家战略或政策因素。第17页,共110页,2024年2月25日,星期天三、工业指标(1)边界品位边界品位是在圈定矿体时对单个样品的最低质量要求,是划分矿石与废石的标准。对一般需要选矿的有色或稀有金属矿产而言,其边界品位一般是尾矿品位的1.5至2倍以上,以便有利于最大限度的利用资源。用边界品位圈定的矿体达不到最低工业指标时,即为低品位矿(即老规范中的表外矿)。边界品位也是划分低品位矿石与工业矿石不同矿石品级的界线。第18页,共110页,2024年2月25日,星期天三、工业指标(2)最低工业品位一般是指单个工程中,有时则用于单个块段中有用组分的最低平均含量,是划分暂不能利用的低品位矿石与能利用的最低品位工业矿石的界线。其在计划经济体制时期,一般是矿山生产盈亏平衡品位。最低工业指标值,取决于矿产品(精矿)价格与采选(冶)总成本和略有盈余的平衡点。应当指出,它是随着社会经济因素制约而随时变化的变量。第19页,共110页,2024年2月25日,星期天三、工业指标(3)矿床平均品位是指一个矿区内工业矿体的总平均品位,用以衡量全矿区矿石的贫富程度,它是评价某个矿床在当前社会经济条件下进行建设和开发是否能获得预期经济效益的一项指标。边界品位与最低工业品位是一对含义明确、互为依存、相互影响,便于操作的两个指标,而矿床平均品位的介入,又必然对边界品位和工业品位产生影响,合理的确定这三者的关系,对于保证最大限度的合理利用矿产资源和矿山企业一定的经济效益是非常重要的。第20页,共110页,2024年2月25日,星期天三、工业指标(4)综合工业指标(当量指标或折算指标)某些矿床或矿体中往往具有两种或更多共、伴生矿产,其中任一种都达不到各自的工业品位,为了合理利用矿产资源,提高其工业利用价值,按照等价的原则,一般将其中一种或几种较次要的组分折算成主要组分的等价品位(当量品位或综合品位),然后按当量品位指标确定边界品位、最低工业品位和矿床平均品位。有人提出,参与折算的元素的品位,一般应大于或等于尾矿品位,对含量低于尾矿品位的样品一律以“0”品位参与计算。这种作法是不妥的,只有把矿体中所有样品实际含量数值参与平均品位计算的结果才是唯一正确方法。折算系数的确定:A折算B的系数=A选矿回收率×A计价系数×A价格∕(B选矿回收率×B计价系数×B价格)第21页,共110页,2024年2月25日,星期天三、工业指标(5)伴生有用组分指在矿石中对主要有用组分进行采、选、冶加工过程中,可以顺便回收计价、或单独提取具有单独产品和产值的组分。在勘查中对这类组分要确定相应的指标,进行综合评价,估算储量(如紫金山铜矿中伴生金、银、硫铁矿、明矾石等)。第22页,共110页,2024年2月25日,星期天三、工业指标(6)有害杂质允许含量是指在矿体中影响矿石采、选、冶或影响矿产品质量的组分的最大允许平均含量,是衡量矿石质量和利用性能的重要指标之一。第23页,共110页,2024年2月25日,星期天三、工业指标2、开采技术条件指标(1)最低可采厚度指在当前经济条件下,单个矿体或单个块段有开采价值的最小厚度,一般指真厚度。最低可采厚度对于薄矿层来说是一个重要指标。(2)米百分值(或米克∕吨值)单工程中金属矿体厚度小于最低可采厚度,但品位高,当其厚度×品位的乘积≧最低可采厚度×最低工业品位乘积(米百分值)时,即可视为工业矿体,参加储量估算。第24页,共110页,2024年2月25日,星期天三、工业指标(3)夹石剔除厚度为矿体中最大夹石允许厚度,这是工业部门根据采矿技术和开采技术条件对固体矿产提出的一项工业指标,是开采时予以剔除的最小厚度;小于规定的夹石剔除厚度,则应并入矿体估算储量。若夹石并入矿体后低于最低工业品位,则不能并入,此时应将夹石一侧的一个样品连同夹石(使两者厚度≧夹石剔除厚度)一并剔除。並将夹石两侧的矿体分别圈定为两个独立的部份(可以是2个矿体,也可是分枝矿体)。(4)剥采比(或剥离比、剥采系数、剥离率)露天开采的矿床,开采时采场上部覆盖物量与矿石量之比值,用吨或立米表示。等于或小于剥采比的那一部分资源储量,可以露天开采。第25页,共110页,2024年2月25日,星期天三、工业指标(5)含矿系数(或含矿率)表示矿体的矿化连续程度的一项指标,反映矿化极不均匀的矿化体与其所含具工业价值的矿石的比值。矿化完全连续的矿体其含矿系数为1,或接近1,矿化越不连续其含矿系数越小。由于其独立可采地段分布极不规则,很难用常规方法圈定矿体,此时必须用含矿系数来校正储量估算矿量,使其比较符合实际。对钨、锡、汞、锑或稀有金属矿产,当矿化连续性差,难以圈出完整的工业矿体,可根据矿化地质规律先圈定含矿带,並通过有效的取样方法,计算含矿体的含矿系数,然后估算出金属储量。含矿率的计算不是简单的用见矿工程率、见矿工程控制的厚度率、面积率、体积率来代替,比较合理的方法应充分根据控矿因素、矿化富集分布规律,采用有效手段以取得连续线性含矿系数较为合理,具体应根据矿床特点灵活确定含矿系数的测算方法。第26页,共110页,2024年2月25日,星期天三、工业指标含矿系数测定方法例一:某铁锰矿,受断裂构造控制,在含锰的褐铁矿体中有不规则的铁锰矿石,呈不规则条带状,透镜状,脉状体分布,单体规模小,对应差,无法单独圈定。为估算含锰褐铁矿体中铁锰矿石的资源量,采用了在探槽中及露天采矿工作面上,用大体积取样法,对样品中的铁锰矿石进行手选,计算出含矿系数,然后用各工程含矿系数加权求出矿区总含矿系数估算褐铁矿体中的铁锰矿资源量。第27页,共110页,2024年2月25日,星期天三、工业指标含矿系数测定方法例二:某花岗斑岩中风化淋积型钾长石矿,其有用部分为钾长石斑晶。其风化壳即为含矿体,为求出钾长石资源量,按一定勘探网度布置坎沟、小园井等探矿工程,进行大断面规格采样(如20×15cm),求出每个样品钾长石含矿率(钾长石重量与样品重量之比。少部分含矿层厚度较大地段用大口径钻孔控制,对钻孔所得的含矿系数用类比方法进行必要的较正(钻孔中岩心对钾长石斑晶产生机械磨损破坏,降低了含矿系数)。采用大断面刻槽方法取样计算含矿系数,在客观上也存在贫化问题,如能在含矿体范围内适当的采几个全巷法样品(如在小园井中分段计算含矿率、或露头陡坎采取1-2m3为样品计算含矿率等)与刻槽样含矿率进行比较,求得校正系数,能更客观真实反映与矿山生产较接近的含矿系数。第28页,共110页,2024年2月25日,星期天三、工业指标例三:某些大脉钨矿,因黑钨矿呈矿团、矿囊分布,极不均匀,很难用通常刻槽取样圈定矿体。一般也采用含矿系数估算含钨石英脉中的资源量(穿脉或沿脉坑道中用全巷法计算含矿石英脉与钨矿物的重量比;或在坑道壁中通过面积比计算含矿系数)。第29页,共110页,2024年2月25日,星期天三、工业指标(5)无矿段剔除长度及高度一般是对脉状矿床或品位变化大的复杂类型矿床所做的特殊规定。即在沿脉坑道中(隔一定间距在掌子面采样控制矿体)连续低于边界品位的无矿段达到一定长度(或高度)时应予剔除的地段。一般工业指标中规定:上、下对应无矿段的剔除长度一般为10-15m,上、下不对应(或单层坑道控制)的无矿段的剔除长度,一般为20-30m;无矿段剔除高度以半个中段或一个中段衡量(参见图29)。第30页,共110页,2024年2月25日,星期天三、工业指标注①、②为无矿段;①为上下对应、②为上、下不对应沿脉掌子面样间距为5m;坑道中段高度为30m图中“a、b、c”“d、e、f”、“g、h”、“e、m”等采样控制的无矿长度为10—15m,因“上、下”不对应,故可不剔除。第31页,共110页,2024年2月25日,星期天四、储量估算参数的确定目录(一)平均品位(二)矿体厚度计算(三)面积计算(四)体重(五)块段体积计算第32页,共110页,2024年2月25日,星期天四、储量估算参数的确定(一)平均品位1、单工程平均品位对样品长度不等及品位变化较大的矿体,一般用样品长度加权计算;若样品长度基本相等,或矿石品位较均匀,可以用算术平均法计算。地表探槽中的刻槽样,由于样品受地形影响起伏转折,故地表探槽中的矿体平均品位一般采用单个样品所代表的矿体真厚度加权计算。对品位变化大,在坑道中对壁采样处的工程平均品位,需用两壁样品长度或真厚度加权。两工程交叉控制(如坑道与钻孔)的矿体,用两工程真厚度加权。第33页,共110页,2024年2月25日,星期天四、储量估算参数的确定2、线(剖面)平均品位线平均品位是指在用垂直断面法(或水平断面法)估算储量时,块段矿体在剖面线上的平均品位。若矿体厚度、品位较稳定,可用算术平均法;矿体厚度,品位有一定变化时,一般均采用加权平均法。按照储量估算块段在剖面线上的控制工程数和分布情况,一般有以下几种方法:①储量估算剖面上有2个工程控制,或有2个以上工程控制,但工程问距基本相等时,可采用单工程真厚度加权计算;②若有2个以上工程控制,工程间距有一定差异,此时可采用各工程所控制的距离与各工程真厚度加权计算,或者采用相邻工程所控制的面积加权计算。第34页,共110页,2024年2月25日,星期天四、储量估算参数的确定3、块段平均品位一般均采用面积加权计算。但对工程分布均匀、厚度、品位较稳定的块段可采用算术平均法或真厚度加权计算。以上是采用剖面法估算储量时的计算方法,当采用地质块段法估算储量时平均品位计算方法如下:第35页,共110页,2024年2月25日,星期天四、储量估算参数的确定(1)工程分布均产匀、矿体形态(厚度)稳定、品位变化较小,可采用算术平均法。(2)工程分布尚均匀,形态(厚度)变化大,或品位变化大,用真厚度加权。(3)工程分布不均匀,形态(厚度)及品位有一定变化,可采用真厚度与单工程控制距离加权计算(图1)。A、真厚度加权B、各工程矿体真度与控制距离加权第36页,共110页,2024年2月25日,星期天四、储量估算参数的确定4、储量类别、矿体、矿床平均品位,均采用矿石量加权计算。5、特高品位处理(1)为什么要处理特高品位在贵金属和有色金属矿体中,有时会出现高于同一矿体平均品位数倍、数十倍,甚至数百倍的少数样品,它们对矿块、矿体的平均品位和储量产生明显的影响,並可能给矿山生产带来风险。为了降低储量估算误差,减少矿山风险,应对特高品位进行处理。(2)特高品位的确定对特高品位的确定,目前国内外尚无公认的方法和标准。根据统计和矿山生产实践经验,原国家储委在审批报告时一般取矿体平均品位的6-8倍值作为特高品位,矿体品位变化系数大取上限,反之,则取下限。第37页,共110页,2024年2月25日,星期天四、储量估算参数的确定(3)特高品位的处理方法特高品位的处理方法,根据有关规范及原国家储委在《有关金属矿产勘探报告编写和审批中几个问题处理意见的暂行规定》(1991.10)中有关原则说明如下:①、首先对所有特高品位样品进行第二次分析,如确证为特高品位再作处理;②、对特高品位处理时,其影响范围不宜过大。当单工程矿体厚度大时,一般采用单工程平均品位值(特高品位参与计算)代替特高品位;③、矿体厚度小时,一般以其所影响的块段平均品位代替;④、对有一定分布规律的富矿带(条)可以单独圈出矿体,按高于富矿体平均品位的6—8倍值确定为特高品位,处理方法同上。⑤、某种矿石类型品位高,但不能按该矿石类型单独圈出矿体,可用该类型矿石平均品位的6-8倍值确定为特高品位进行处理;⑥、采用单工程处理特高品位,当第一次处理后仍为特高品位时,再用同样方法作第二次处理,直到低于特高品位值;⑦、其他:如采用特高品位的临界值代替特高品位等(需慎重)。第38页,共110页,2024年2月25日,星期天四、储量估算参数的确定(4)特殊情况怎么处理许多大型矿山因扩大规模或通过技改工程、采选冶工艺水平不断提高,成本不断降低,或因市场价格上扬等原因影响,为合理利用低品位矿石资源,需要降低工业指标,重新圈定矿体。由于采用新指标后降低了矿床(矿体)的平均品位,如果采用降低后的平均品位的6---8倍值来确定特高品位,肯定会大幅度增加特高品位样品数量,出现这种情况如何处理,这是许多矿山面临的新问题,有待重新认识研究解决。如紫金山铜矿、悦洋银多金属矿在多次编制核实报告时都曾因降低工业指标或采用综合指标,使资源储量增加,而矿床平均品位降低,相对新增大量所谓的“特高”样品。其处理方法经多种方案比较后,确定采用最初报告中确定的临界值统一处理。也有探索采用加大样品长度(即将原2-3个单样合并后)的平均品位来确定是否为“特高”的处理方法的。第39页,共110页,2024年2月25日,星期天四、储量估算参数的确定(二)矿体厚度计算1、单工程中矿体真厚度(1)钻孔、坑道当钻孔为直孔,穿脉坑道与矿体走向基本垂直的,可简单计算方法,以采样线与标志面(代表矿体顶、底板界面产状)夹角的正弦函数计算(L=L0×sinα)。对无法确定矿体标志面的工程,应在综合图件上正确连接矿体后,再按矿体中心线与采样线夹角的正弦函数计算。当钻孔为斜孔、穿脉坑道与矿体走向夹角小于80度,则采用“万能公式”计算(同下页)。

第40页,共110页,2024年2月25日,星期天四、储量估算参数的确定(2)地表槽探地表刻槽样,因样品的坡角和方位不在同一条直线上,一般应对每个样品分别计算真厚度,各样品真厚度之和即为矿体真厚度。计算公式如下:L=L0×|(sinαcosβcos(γ1-γ2)-cosαsinβ)|

或L=L0×|(sinαcosβsinγ±cosαsinβ)|

上式中:L为真厚度;L0为样长;γ1为矿体倾向;α为矿体倾角;γ2为样槽倾伏向;β为样槽倾伏角;γ为样槽走向与矿体走向夹角。在地表用刻槽样圈定矿体,对上述参数一定要认真收集,用专门表格登记,如果样品数据资料不全,则无法准确确定矿体的真厚度,直接影晌计算结果。第41页,共110页,2024年2月25日,星期天四、储量估算参数的确定2、块段矿体平均厚度(真厚度、水平厚度、铅垂厚度)块段矿体厚度变化不大,或块段中工程分布均匀,可用算术平均法算。厚度变化较大,工程分布不均匀时,可用工程点影响长度加权计算,或采用块段体积与面积加权计算。第42页,共110页,2024年2月25日,星期天四、储量估算参数的确定地质块段法的块段平均厚度计算:(1)工程分布均匀、厚度变化不大,可采用算术平均法。(2)工程分布不均匀、厚度变化大(图2):①、采用算术平均法计算,其平均厚度为3m;②、采用厚度与控制距离加权计算,其平均厚度为3.43m。计算公式为:

两者对比,采用后者计算结果是准确可靠的。第43页,共110页,2024年2月25日,星期天四、储量估算参数的确定(3)不同矿体形态平均厚度的计算方法①、矿体形态为锥体时其水平或垂直投影的块段图形为三角形(图3a、3b),其平均厚度为3个工程累加厚度的1/3。一个工程沿走向、倾向外推,则形成2个或4个三角锥(图3c、3d),如果只按一个块段计算,其平均厚度为该工程见厚度的1/3(不能采用1/4或1/5)。第44页,共110页,2024年2月25日,星期天四、储量估算参数的确定②、矿体形态为楔形矿体块段为4个点控制,其中两相邻工程有厚度、另两个相邻工程(或外推点a、b)无厚度(图4),其块段平均厚度为两工程厚度之和的1/4。③矿体形态为多边形板状

矿体的块段为多边形板状,一般每一个工程控制点都有厚度(图5),其块段平均厚度为各控矿工程厚度的算术平均值(当工程分布不均匀、厚度变化大时,采用各工程厚度与控制距离的加权平均法)。第45页,共110页,2024年2月25日,星期天四、储量估算参数的确定④块段矿体由两种或两种以上体积形态组成(图5)。a、图5a,为四边形组成的矿体块段,其中3个工程有厚度,一个为0,按算术平均法,其平均厚度为(ZK1+ZK2+ZK3+a)/4=4.5m图5a可以由2个不同体积形态组成:如图5b为两个四方锥,图5c为一个四方锥和一个三角形板块(或正楔形)组成。它们的平均厚度可以用其体积来分别计算。b、图5b,其平均厚度c、图5c,其平均厚度由于体积形态组合不同,以上3种计算结果都是正确的,但其最大相对误差可达到25%。这种多解的矿体形态,在实际工作中,只能计算其平均值。为了减少计算误差,在划分块段时应充分考虑矿体形态和工程对应程度,尽量划分到一个自然块段(即由4个或3个对应工程圈定的块段)。第46页,共110页,2024年2月25日,星期天四、储量估算参数的确定(三)面积计算1、几何图形法块段矿体在平、剖面图上呈三角形、梯形或平行四边形,可按几何图形面积公式计算。有关边长数据可在1:500-1∶1000精度图纸上量取,如果构成几何图形的各顶点能够计算出坐标,则可直接用行列式计算,采用这种方法(与图纸比例尺无关)精度高,如用计算机处理更快捷。采用几何图形计算面积应注意载体质量和图形比例尺。2、方格法对形态不太规则或剖面上用曲线连接矿体的图形,可用方格法计算,厚度小呈狭长形的图形不宜用方格法。3、其他方法,还有求积仪法,曲线仪法及计算机扫描等,略。第47页,共110页,2024年2月25日,星期天四、储量估算参数的确定(四)体重

1、采样和测试的一般要求采样的代表性:样品分布要有代表性;主要矿体要有一定的比例;每种主要矿石类型或品级的有效小体重样数量不少于30件;致密块状矿石,如大多数铜、铅、锌、硫化金属矿石,常以小体重测试成果估算储量;松散多孔状矿石,则采用大体重估算储量。矿石湿度大于3%时,需经过湿度校正后的体重方能参与储量估算。矿石湿度小于3%时,矿石小体重不需要湿度校正。小体重样的体积一般60—120立方厘米,或180—350克。大体重,对每种主要矿石类型做1-2件,大体重样体积不小于0.125立方米(相当于0.50m×0.50m×0.5m正方形或1m×0.5m×0.25m矩形),一般用凿取法采样,大体重样的采样点选择要有充分代表性,其采样质量和秤重应严格按规定操作。对大体重样的体积可用丈量法或填沙法,样品的湿度测试和分析项目与小体重相同。

第48页,共110页,2024年2月25日,星期天四、储量估算参数的确定

当矿石体重与某些元素或组分相关时,要在测小体重的同时分析有关元素或组分。矿石的小体重、湿度及化学分析最好是同一样品,按照小体重→湿度→化学分析的先后顺序进行测试。如果用两块矿石,一块做小体重,另一块测湿度,做化学分析,则可能影响测定成果的真实性。对湿度小于3%的致密块状矿石,在取得有代表性数据后可少做或不做。对每一件测定小体重的样品,应进行详细的登记记录,包括取样工程、位置、重量,矿石新鲜、氧化程度,空隙、孔洞状况,主要金属、非金属矿物名称及含量、矿石结构、构造等内容,以便与体重测定结果相互对照检查,排除那些在测试过程中因偶然误差而造成测试错误的样品(有时是很难避免的)。注意避免以下情况:样品无代表性,如混入一些氧化矿石样品;只做小体重,不测湿度,也不做有关项目化学分析;对所测样品数据不作具体分析,采用了个别错误的成果;以小体重样品所在位置的基本化学分析品位代替小体重的品位;储量估算采用所测小体重的平均体重值(无法论证代表性);使用矿区自已土法测定的体重值(小体重测试应由有资质的测试单位承担,测试成果应出具正式测试报告)。第49页,共110页,2024年2月25日,星期天四、储量估算参数的确定2、确定参与储量估算的体重值,一般有以下几种情况:(1)各矿体,各类型的矿石体重接近,允许一个矿体或全矿区采用一个总的平均体重值估算储量。(2)不同矿石类型、品级的体重有差别,可分别计算各自类型的体重平均值(如矽卡岩型铅锌矿石与花岗岩型铅锌矿石)参加储量估算。(3)同一种矿石类型(或几种相似类型的混合类型)因品位变化大影响矿石体重,也可划成若干品位区间分别计算各区间平均体重值估算储量(如Ph+Zn<2%、2-<4%、4-<6%、6--<8%、≥8等)。(4)体重与一种或数种组分有相关关系时,可按体重与这些组分的函数关系线性方程计算矿石体重,不同块段或矿体可分别根据有关组分含量用上述方程计算确定矿石体重值。第50页,共110页,2024年2月25日,星期天四、储量估算参数的确定(5)实例例1:某岩金矿区,金矿石伴生黄铁矿,含量不稳定。矿石体重与金品位正相关,但不密切;与硫铁矿正相关,相关系数>0.9;金与硫铁矿正相关,相关系数小。脉石矿物稳定,矿石为致密块状。显然,矿石体重变化取决于硫铁矿的含量,而不是取决与金的含量。因此,每个小体重样在测试Au的同时,还要分析S。根据体重与S的线性方程计算每一个块段(或矿体)的平均体重(矿区内的组合样需分析S,样品分布有充分代表性)。若矿石体重值只考虑金的平均含量,而不考虑黄铁矿对体重的影响,其体重值是不可靠的。第51页,共110页,2024年2月25日,星期天四、储量估算参数的确定例2:紫金山铜矿矿石体重值的确定铜矿石主要有三种自然类型,即花岗岩型(主要的),隐爆角砾岩型(次要的)、英安玢岩型(微量),矿石均为致密块状。经对这三种类型小体重分别统计计算,矿石体重极接近,各类型矿石体重平均值与混合型矿石平均值相对误差为0.09一0.30%,可以忽略不计。因此用混合型矿石计算体重。矿石中平均含硫铁矿约8%([S]4.23);铜矿物约1.5%。可判定黄铁矿是影响体重的主要因素。铜矿物中有蓝辉铜矿(比重5.60)、硫砷铜矿(比重4.45卜)、铜蓝(4.63),这3种铜矿物按各自含量与比重加权计算的混合平均比重为5.l左右,黄铁矿的比重为5—5.1,两者基本一致。因此可将这两类金属矿物总量用金属硫表示(S金),矿石中化学分析的总硫(S总),还包括了明矾石矿物中的硫(SO3)。据257件矿石小体重成果与各组分相关关系及线性方程统计结果见表1。从表中可知:体重与明矾石不相关;与铜正相关,但关系不密切(因铜矿物只有1.5%±);与总硫(S总)关系密切,但因其中包括了明矾石的因素,故不能采用;最后,与金属硫相关系数为0.92,所以采用其线性函数方程计算各储量块段的矿石平均体重,估算矿石量。第52页,共110页,2024年2月25日,星期天四、储量估算参数的确定表1矿石小体重与有关因素相关关系及函数关系表项目相关系数线性函数方程d(体重)—S总0.93d=2.582+0.0330·S总d(体重)—S金0.92d=2.606+0.034·S金d(体重)—SO30.04不相关d(体重)—Cu0.54d=2.754+0.0367·Cu第53页,共110页,2024年2月25日,星期天四、储量估算参数的确定例3:广东凡口矿区,方铅矿(Pb86.6%)、闪锌矿(Zn67.1%)、黄铁矿(53.45%)等金属矿物组分多,各自对体重影响大。容矿岩石为灰岩,平均体重2.83。金属矿物比重分别为闪锌矿3.8、黄铁矿5.0、方铅矿7.5。经计算矿石中每增加1%的元素含量,对体重的影响值(增值系数)分别为Zn1%=0.01446、[S](黄铁矿中S)1%=0.04060、Pb1%=0.05393

增指系数计算方法,以闪锌矿为例:3.8-2.83/67.1=0.01446。以闪锌矿为基数,这3种矿物增值系数的比值为:Zn∶[S]∶Pb=1∶2.81∶3.73,这个比值关系称之为增值指数。3种指数相加为总指数。在储量估算时,先按各块段各组份平均品位换算成总指数,然后按相关指数线性方程(d=d0+ax)计算矿石平均体重。如:块段品位Pb=5.38%、Zn=14.47%,[S]=16.65%,总指数81.33

铅指数数=5.38×3.73=20.07

锌指数=14.47

硫指数=16.65×2.81=46.79

该块段矿石平均体重:d=2.7372+0.0127×81.33=3.77第54页,共110页,2024年2月25日,星期天四、储量估算参数的确定(6)有关注意事项使用以上几种方法,要注意以下几个间题:一是查明体重变化的相关因素,特别是主要因素;二是取全有关参数(体重测试、基本分析、组合分析的测试项目要对应,不能缺项);三是体重与有关因素的线性方程计算因素取舍要合理;四是在储量估算中的具体体重值的使用对象是块段、矿体、某种矿石类型、或是某个区间,要根据实际情况和需要做出确定。总之,体重的确定有时是很复杂的,要做到合理、因地制宜。究竟哪些是最合理的、简便的方法,还有待大家研究总结。不过,对多金属矿区,只考虑某一种因素,或者按总量的区间值等简单方法确定矿石体重估算储量,往往效果较差,使估算结果误差偏大。第55页,共110页,2024年2月25日,星期天四、储量估算参数的确定(五)块段体积计算1、当采用垂直平行剖面法或水平断面法时,一般采用以下几种体积计算公式:(1)梯台(棱柱体)公式(a)(图6):两剖面(截面)平行、两截面面积形状相似、两截面面积相对误差不超过40%。(2)截锥体(棱台)公式(b):两截面面积相对误差为≥40%,或两截面形状相差较大或形状不规则时采用。第56页,共110页,2024年2月25日,星期天四、储量估算参数的确定

(3)正楔形体公式(c)(图7)

两相邻剖面,一侧有面积,另一侧无面积(矿体呈线形尖灭),有效面积的一侧的平均长度或宽度与线尖灭长度相等。。(4)斜楔形体积公式(d)(图8)当楔形块段L1≠L2,则形成斜楔形,采用公式(d)计算体积。第57页,共110页,2024年2月25日,星期天四、储量估算参数的确定

(5)角锥体公式(e)相邻剖面只有一个截面有矿体面积,另一截面矿体作点尖灭。

以上公式中:V—体积;S—面积;H—两截面平均距离(或矿体外推距离);L1—块段矿体平均长度(或宽度);L2—线形尖灭的长度(或宽度)第58页,共110页,2024年2月25日,星期天四、储量估算参数的确定⑹夹石和“天窗”的体积计算①块段的相邻剖面两截面夹石对应时可直接用相邻剖面积计算矿体体积(相当于面积压缩法)(图9)。②相邻截面中夹石不对应时(图10),应采用体积扣除法(俗称:“脱壳法”)计算矿体体积(公式f)(若采用面积压缩法计算误差大,不合理)。

而采用公式不合理,形成人为误差。按此公式计算扣除夹石的体积扩大为:,,而夹石的实际体积为:,扩大了三倍。第59页,共110页,2024年2月25日,星期天四、储量估算参数的确定③、矿体中有“天窗”时的体积计算完整的矿体中有个别工程不见矿(如图中B2),俗称开“天窗”,天窗的形态和体积计算是比较复杂的,在一般情况下往往直接用A、B两剖面矿体面积计算AB块段的体积(图30a),这种计算结果实际上扩大了天窗的体积,如图30b、30c所示,将无矿空间延伸到A剖面和C剖面,是不合理的。如果按A剖面上的A2工程中矿体向B剖面有限外推二分之一尖灭(图30d),所构成的矿体形态是很难计算的;按照这个方案连接矿体可能过分扩大了无矿工程的影响。如果将这种天窗只当成一个简单的菱形(两个菱形锥体)来圈定,在剖面图上也是无法接受的(图30e)。第60页,共110页,2024年2月25日,星期天四、储量估算参数的确定建议采用图30f中的夹石形态予以扣除。即先计算AB块段总体积,然后扣除天窗体积。即式中:SA为A剖面矿体面积、SB为B剖面矿体+夹石面积、SB1、SB2为B剖面上矿体面积、Sx为天窗面积、H为A、B剖面间距。第61页,共110页,2024年2月25日,星期天四、储量估算参数的确定2、地质块段法块段体积的计算:(1)块段水平投影面积与平均铅垂厚度的乘积(2)块段垂直纵投影面积与块段平均水平厚度的乘积(3)有夹石存在时应采用体积扣除法扣除夹石体积(只有当块段中全部工程中的夹石完全对应时才能用“压缩法”扣除)(4)块段中有脉岩时的体积计算①、脉岩在矿体中呈夹石出现(同3)②、脉岩在矿体中呈“天窗”出现(可采用面积扣除、体积扣除、脉岩平均厚度扣除等方法(图10a)。块段中出现天窗用“面积”扣除举例(图10b)。

A1A3C1C3块段中B2为无矿工程,abcd为天窗(按1/2平推),块段体积=(总面积—天窗面积)×平均铅直厚度。扣除的天窗体积形为菱形板状,而不是锥体(或八面体)。第62页,共110页,2024年2月25日,星期天五、矿体圈定目录

(一)矿体圈定的内容(二)单工程中矿体圈定

1、一般原则

2、单工程中矿体结构情况(三)剖面上矿体的连接

1、一般原则

2、分枝矿体的连接

3、工业矿体与低品位矿体的连接(四)矿体在储量估算垂直纵投影图或水平投影图上的圈定(五)矿体的外推(六)不同矿石类型(品级)的连接圈定

1、矿石类型、品级概念

2、共生矿床概念

3、矿石品级

4、矿石类型的划分

5、不同矿石类型(级别)的圈定

6、混合矿的圈定

7、综合指标的应用

8、混合圈矿实例

9、氧化矿与原生硫化矿的圈定第63页,共110页,2024年2月25日,星期天五、矿体圈定

(一)矿体圈定的内容矿体圈定包括单工程中矿体圈定,剖面、平面上矿体外部边界的圈定、内部边界的圈走,先外后内。外部边界是指矿体在走向、倾向、厚度三度空间的范围,即矿体顶、底板界面和四周边界;内部边界,主要包括夹石、天窗、矿石类型、品级之间的界线。矿体的连接应符合矿床地质特征和矿化规律。先连接地质现象,根据地质规律、对比标志再连接矿体,使矿体连接符合客观实际,为储量估算提供可靠基础。合理的连接矿体是储量估算的关键。当一个矿区的矿体连接对比标志不明显,或者矿体呈平行密集分布的情况下,很难确定正确的连接方案,在这种情况下除了应充分根据地质因素(如标志层、岩性岩相组合、顶、底板特征、指示元素、矿石结构构造、矿物共生组合类型等等)特征外,有时还得考虑物、化探成果或采用加密工程验证方法进行全面综合对比;通过编制平面、剖面、纵剖面图对矿体在三度空间的变化规律进行对比,力求以最佳的方案连接矿体。第64页,共110页,2024年2月25日,星期天五、矿体圈定(二)单工程中矿体圈定1、一般原则(1)严格按照工业指标,从等于、大于边界品位的样品圈起,矿体中大于夹石剔除厚度(指真厚度)的夹石要单独圈定。(2)小于可采厚度,但厚度与品位的乘积达到米百分值或米克/吨值指标时,仍可圈为工业矿体。(3)“穿鞋戴帽”,指矿体边界带入的低品位样品,在一般情况下允许带入不超过夹石厚度的低品位样品。有些情况下;工业部门对薄矿体“穿鞋戴帽”限制允许带入一个样品,或带入的低品位样品真厚度不超过工业矿体真厚度等。此外,若矿体边部有厚大的低品位矿应单独圈定。(4)矿体内部的低品位矿,一般在厚度不大,分布无规律的情况下,不单独圈出;对厚度大,成片有规律分布的低品位矿应单独圈出(“成片有规律分布”可以理解为两相邻剖面至少有3个及以上的对应工程控制)。

第65页,共110页,2024年2月25日,星期天五、矿体圈定2、单工程中矿体结构情况(1)矿化均匀、只有一种矿石类型,全部样品均达到最低工业指标。(2)矿化均匀,由2种或2种以上矿石自然类型组成(图11)第66页,共110页,2024年2月25日,星期天五、矿体圈定(3)由不同品级矿石组成,如低品位矿石、工业矿石、富矿石组成等。(4)不同品级矿石、夹石构成的矿体。当厚度小于最大允许剔除厚度的夹石带入后,矿体的平均品位必须大于或等于最低工业品位,如不能满足这一条件,该夹石不能带入、应予剔除(为达到夹石剔除厚度,应适当将夹石上盘或下盘的一个样品带入后一并剔除)。(5)不同品级、不同类型及夹石组成的矿体。(6)共生的不同金属矿石组成的矿体(图12)。(7)硫化矿石中夹氧化或混合矿石。第67页,共110页,2024年2月25日,星期天五、矿体圈定(三)剖面上矿体的连接

1、一般原则按照地质规律,先连接剖面上相邻工程间的地质体和地质界线,然后按照控矿的地质构造因素,再连接矿体。矿体边界一般用直线连接。对有规律、必须用曲线连接矿体时,矿体厚度要符合总体变化趋势,厚度从小到大(或从大到小)要严格按照渐变趋势圆滑曲线连接,在两工程之间中点处矿体厚度应相当于两工程矿体的平均厚度。第68页,共110页,2024年2月25日,星期天五、矿体圈定2、分枝矿体的连接

相邻两工程对应矿体有分枝时,其分枝部分的矿体和夹石的累计厚度,不能超过完整矿体的厚度,否则,要将其中一部分分枝矿体单独圈定。见图13、图14。第69页,共110页,2024年2月25日,星期天五、矿体圈定3、工业矿体与低品位矿体的连接相邻工程中对应矿体分别为工业矿体和低品位矿体时,通常有2种连接方法:(1)采用品位内插这是传统经典方法,就是在工业矿体与低品位矿体之间通过计算确定最低工业品位值的位置,为工业矿体与低品位矿体的界线,这种方法虽然精度很高但计算比较繁琐,同时使块段矿体形态复杂化(出现天窗),增加了储量估算难度。在实际工作中很少采用。第70页,共110页,2024年2月25日,星期天五、矿体圈定(2)对角线连接当相邻两工程对应矿体分别为工业矿体和低品位矿体时,一般采用对角线方法分别圈定工业矿体和低品位矿体。这种方法保持了矿体形态的完整,简化了储量估算程序。见图15、图16。第71页,共110页,2024年2月25日,星期天五、矿体圈定(3)特殊情况处理据稀有金属勘查规范:对品位变化不均匀或很不均匀的矿体,在矿体块段圈定中允许个别工程平均品位低于最低工业品位,但不得有连续2个以上工程都低于最低工业品位。根据上述规定,为了保持矿体完整性,可带入个别工程的低品位矿,但受其影响的各个块段平均品位应大于等于最低工业品位。(4)厚度内插问题传统经典方法,当矿体厚度小于最小可采厚度,品位达到最低工业指标,但米百分值(或米克吨值)达不到指标的工程点,可用厚度内插法确定最小可釆厚度位置,但该方法计算比较繁琐,切使块段矿体形态复杂化(出现天窗),增加储量估算难度,一般较少采用。通常做法是将该工程点做为工业矿体的尖灭点连接。第72页,共110页,2024年2月25日,星期天五、矿体圈定(四)矿体在储量估算垂直纵投影图或水平投影图上的圈定

在这两种图件上,主要是圈定矿体的四周边界和矿体内的天窗。1、矿体在倾向方向的边界将各个剖面上矿体的尖灭点投放在垂直纵(或水平)投影图上,这些投影点的连线即为矿体倾向方向的边界线。2、矿体在走向方向的边界储量估算投影图上,边缘两侧剖面上的控矿工程沿走向外推尖灭点的连线即为矿体走向方向的边界线(外推原则与剖面上外推原则相同)。非边缘勘探线上的“边部”见矿工程,一般不作走向外推,而是与两侧相邻剖面倾向方向上的矿体尖灭点相连(图21a1、a2、a3)。这种连接方法的矿体形态与工程控制程度相适应,形态简单,便于划分储量类别和估算储量。还有一种连接方法:认为D、E两剖面上控矿工程对应程度相差太大,D剖面上的“边部”工程应单独作走向外推(图21b1、b2、b3)。这种连法虽然对储量估算结果影响不大,但矿体形态变复杂,给类型划分、体积计算和块段平均品位计算带来许多困难。第73页,共110页,2024年2月25日,星期天五、矿体圈定第74页,共110页,2024年2月25日,星期天五、矿体圈定3、矿体内部不见矿工程,所形成无矿空间(天窗)的圈定,该天窗在倾向方向的边界点已在剖面上圈定,投影图上只是外推其在走向方向上的尖灭点,其原则与矿体外推相同。矿体内部单个无矿工程的天窗一般为菱形(参见图30a)。4、断层两侧的矿体在水平(或垂直纵)投影图上的连接(1)正断层造成矿体缺失(图22)(2)逆断层造成矿体重叠(图23)第75页,共110页,2024年2月25日,星期天五、矿体圈定5、采用垂直平行剖面法估算储量时,工程中矿体沿走向、倾向外推及块段划分以剖面线为准(图24)。6、采用地质块段法估算资源/储量时,工程中矿体沿走向、倾向外推及块段划分以工程实际见矿位置为准(图25)。

第76页,共110页,2024年2月25日,星期天五、矿体圈定(五)矿体的外推单工程或矿体边部工程中的矿体,在储量估算时可以允许合理的外推。矿体外推除了按工程间距以外,要充分考虑矿体的形态、产状和产出的地质规律。1、有限外推(1)控矿工程边部的相邻工程不见矿,为有限外推,矿体外推距离为正常工程间距的1/2尖推(或1/4平推);当工程间距小于正常间距,则按实际控制间距的1/2尖推(或1/4平推)。(2)当矿体的走向、倾向廷伸长度、与厚度成正相关时,在有充分依据(有一定控矿工程统计资料)情况下,可科学地确定外推距离(一般为一个正常间距的1/2、1/4或3/4)。(3)当相邻工程中存在大于边界品位的二分之一矿化时;可作三分之二尖推,或三分之一平推。

第77页,共110页,2024年2月25日,星期天五、矿体圈定2、无限外推矿体无限外推,按所确定的相应工程间距的1/2尖推(或1/4平推)。3、米百分值圈定矿体,一般不外椎,但对稳定的薄型矿体,多数工程点用米百分值圈定时,也可以外推圈定。4、尖推与平推一般情况下热液金属矿床多采用尖推,而沉积矿床层状矿体多采用平推。5、矿体呈有规律逐渐变薄尖灭时,可按自然尖灭角趋势延深到尖灭点。第78页,共110页,2024年2月25日,星期天五、矿体圈定6、矿体外推方向

任何工程矿体只能沿倾向(通常即为勘探线)方向和走向(即垂直勘探线)方向外推。在单工程情况下,外推矿体为正方形或菱形(图25A-a)。将矿体外推点(a1、……、an)作为边界线的中点连接线,是错误的(图25A-b、25A-c)。第79页,共110页,2024年2月25日,星期天五、矿体圈定7、夹石外推原则与矿体一致。8、矿体合理外推的有效距离内受到断层或脉岩的阻挠(破坏)(1)矿体外推至断层(脉岩)处尖灭(图17)(2)按正常外推距离外推至尖灭点,在断层(或脉岩)与工程之间的矿体按实际截取的矿体面积(剖面法)或厚度(块段法)计算体积(图18)。第80页,共110页,2024年2月25日,星期天五、矿体圈定9、相邻工程控制的同一矿体被断层切割,并有一定断距时(对断层性质及断距要作相应研究):(1)按断层性质和断距,根据矿体产状及变化规律将矿体外推至断层(图19),受断层两侧影响的块段一般应作降级处理。(2)当两工程相距较远(超过正常工程网度一倍以上),则断层两侧控矿工程矿体可按无限外推方法外推尖灭点(图20)。第81页,共110页,2024年2月25日,星期天五、矿体圈定10、矿体外推的有关规定(1)中国地调局在《固体矿产推断的内蕴经济资源量和经工程验证的预测资源量估算要求》(内部试行)中对矿体无限外推的规定:外推,一般不超过基本工程间距的1/2。对于金属矿床如经可靠的物探或其他资料证实矿体稳定外延的,外推距离可适当增加;当矿体仅有地表工程控制时,其推深应根据矿床地质规律确定,最大推深不得大于矿体平面长度的1/4,并不得大于400m。(2)《铜铅锌银镍钼勘查规范》中:深部矿体无限外推,应视矿体稳定程度和周围控制程度而定,最大外推距离不得超过勘查网度的工程间距。第82页,共110页,2024年2月25日,星期天五、矿体圈定11、外推储量块段的类别(级别)问题:(1)一般情况下,无论是有限外推,还是无限外推,外推的储量都要相应降级,即(332)降为(333)、(333)降为(3341)。(2)不同控制程度储量类别外推1/2的网度,都应是“相应的工程间距”而不是采用同一种工程间距。为了叙述方便,设(331)工程间距为50×50m、(332)工程间距为100×100m、(333)工程间距为200×200m:(331)资源/储量按(相应工程间距)50×50m网度的1/2外推为(332);(332)资源/储量按(相应工程间距)100×100m网度的1/2外推为(333)。第83页,共110页,2024年2月25日,星期天五、矿体圈定(3)关于(333)的网度问题,一般规范上只是说“用稀疏工程控制”,没有要求用一定的工程网度,但在勘查工作中往往按(332)放稀一倍的工程进行控制(因地质工程是由稀而密,循序渐进的过程),故在确定(333)资源量类别时,大致按(332)放稀一倍,但又不严格要求。关于(333)外推的资源量类别问题,根据最近国土资源部矿产储量评审中心对紫金公司十几份报告审查情况,大致有2条:一是用较系统的(333)工程间距圈定的(333),其外推仍为(333);二是详查以上矿区一般不圈定(3341)资源量。(4)(3341)是个别工程或稀疏工程(一般可大致按(333)放稀一倍)在两维方向控制的(并结合成矿地质条件和物化探异常)外推的资源量。第84页,共110页,2024年2月25日,星期天五、矿体圈定(六)不同矿石类型(品级)的连接圈定1、矿石类型、品级概念(1)矿石类型:矿石自然类型,是根据矿石形成的地质条件所反映的矿石特征,一般可根据矿石的金属矿物、非金属矿物成分,矿石的结构、构造,賦矿岩石的种类等因素划分矿石自然类型。(2)矿石工业类型,它是在划分矿石自然类型的基础上,根据工业上矿石选、冶加工技术条件和工艺流程不同而划分的矿石工业类型。第85页,共110页,2024年2月25日,星期天五、矿体圈定2、共生矿床概念矿床中有两种或两种以上有用组分都单独达到工业指标要求,形成工业矿体,称为共生矿床,如紫金山金铜共生矿床,悦洋银铜多金属共(伴)生矿床等。同体共生:一个矿体中存在两种有用组分都达到工业指标称为同体共生。异体共生:一个矿床中两种以上有用组分构成的矿体分别存在于不同部位,称异体共生,如紫金山矿区“上金、下铜”,即为异体共生。3、矿石品级:指某一矿石(自然类型或工业类型)根据其有用(或有害)组分的含量、物理技术性能的差异,以及按不同用途或要求所划分的等级。第86页,共110页,2024年2月25日,星期天五、矿体圈定4、矿石类型的划分有色金属矿床,如.铜、铅、锌、银、硫等常形成同体共生与异体共生复杂的矿石类型组合,它们存在于同一矿床或矿体中,要划分这些矿石类型并分别圈定和估算储量,是一项十分繁杂的工作,可能给矿床勘探类型划分、基本工程间距等一系列问题都带来重大影响。因此,无论是那一个矿床.对分别圈定矿石类型(品级)估算储量,都要慎重行事。在具备了必需划分工业类型的前提下,应当对矿石类型的具体划分原则、指标进行充分研究和论证,确定合理划分方案。如果不是必需,一般以混合圈矿为好。第87页,共110页,2024年2月25日,星期天五、矿体圈定5、不同矿石类型(级别)的圈定一个矿区或矿体中存在不同矿石类型和品级,需要根据不同工业指标分别圈定和估算储量,一般应同时具备以下条件:①由于矿石性质、用途不同必须分采分选;②矿体空间分布有一定规律,具备分采的条件;③该矿石类型(品级)有一定的储量比例,有分采、分选效益。反之,则不必分圈。分圈方法:首先在单个探矿工程中按不同工业指标分别圈定不同的矿石类型(品级),相邻工程同一矿体中对应的矿石类型(品级)分别进行连接,矿石类型(品级)不对应时一般以对角线的办法進行划分。第88页,共110页,2024年2月25日,星期天五、矿体圈定6、混合矿的圈定对不同矿石类型(品级)在不具备分圈分采条件时可采用混合圈矿,对混圈矿石应按其所占比例采取有代表性样品组成混合样进行选矿试验,並对其作出是否有经济意义和是否进行继续勘查的决定。对不同矿石类型采用混合法圈矿时,当矿体中有2种或2种以上有用共生组分(例如铅、锌、铜、硫等),单工程中只要有一种组分达到最低工业品位就可圈为矿体,其他组分按实际品位参加计算,而块段或矿体中2种或2种以上有用组分应分别达到了最低工业指标。第89页,共110页,2024年2月25日,星期天五、矿体圈定7、综合指标的应用当共生的两种组分含量较低或达不到工业指标(大于边界品位),可考虑采用综合指标(或称当量指标)圈定。在一般情况下,储量估算块段中应有一种组分达到工业指标要求,其余组分一般要达到边界品位以上,或者2种组分都达到边界品位以上。采用综合指标有一个最低值(或起算点)的问题,一般采用该组分尾矿品位指标,无选矿资料则采用规范中综合评价指标,低于这个指标则不能参加折算。如何运用这个指标,是针对单个样品、单工程、块段或矿体?对不同矿区要作具体分析,分别对待。第90页,共110页,2024年2月25日,星期天五、矿体圈定8、混合圈矿实例湖南某矿区按下达的工业指标,最初在一个完整的矿体内部圈出表内、外铅矿体、锌矿体、萤石矿体共6种类型(品级),分别计算储量。但报告提交后,工业部门从地质规律、采选工艺、经济评价等方面全面分析认为,铅、锌、萤石为同体共生;品位虽有不同,但总体变化比较一致,混合开采、综合选矿回收对工艺指标没有影响;而单独开采,分别选矿经济上不合理,实践中不可行。因此,把6种矿石类型、品级重新混合圈定为一个铅、锌、萤石共生的完整矿体,矿山获得了经济效益,证明混合圈定是合理的。第91页,共110页,2024年2月25日,星期天五、矿体圈定9、氧化矿与原生硫化矿的圈定(1)金属硫化物矿床“三带”的划分所谓“三带”,即指原生带(硫化矿)、混合带(混合矿)、氧化带(氧化矿),以氧化率指标划分,即硫化矿:氧化率<10%;混合矿:氧化率10—30%;氧化矿:氧化率>30%。多金属硫化物矿床地表及浅部受氧化作用使硫化矿体受到破坏,一般形成金属贫化带或“铁帽”,在条件适当部位可形成次生富集带达到工业堆积的规模。氧化矿从产出部位、矿石性质、特征、选冶性能等与硫化矿石有很大差别,一般属于不同工业类型矿石,需采用不同的工业指标分别圈定氧化矿和硫化矿。混合矿一般不发育,或所占比例小,一般可归并到硫化矿中。第92页,共110页,2024年2月25日,星期天五、矿体圈定(2)氧化矿与硫化矿的圈定

硫化矿石中金属元素一般在氧化带中受到不同程度贫化,很难用氧化矿的工业指标圈出氧化矿石;原生硫化矿石受氧化作用,金属元素形成硫酸盐类向两侧围岩渗透、扩散形成少量金属氧化物沉淀(如铁帽中),其“矿化”范围与原生硫化矿的范围已大不一样。以上两种情况给氧化矿与硫化矿的矿体连接带来不少难题。如图26,受构造角砾岩控制的脉状PbZn矿体,控矿标志及产状清楚,顶板为片岩、底板为大理岩,品位、厚度比较稳定。第93页,共110页,2024年2月25日,星期天五、矿体圈定①在进行连接时应注意以下情况:

A、“氧化矿”达不到氧化矿的工业指标(可能达到“低品位氧化矿”指标;或低品位硫化矿指标;或什么指标都达不到,只是矿化体)

B、控矿构造或层位标志明显,可对比(或标志不明显)。

C、铁(锰)帽发育与硫化矿特征可对比(或难以对比)。

D、其他对比标志(如某些特征矿物、微量元素等)。从中找出1—2个标志可确认或基本确认地表“氧化矿”与深部原生矿为同一矿体,方可连接为两种不同矿石类型的矿体。②氧化矿与硫化矿在分界处(N1点)厚度与品位的确定方法探讨

A、采用槽探和钻探两工程内插品位和厚度应谨慎使用,因氧化矿已经过外生作用改造,与硫化矿不存在直接的成因和渐变关系。

B、根据控矿标志连接矿体,如构造岩、标志层等。图26可利用地表氧化矿石中的构造角砾岩型氧化矿石(其底板、顶板标志也很清楚)与钻孔中对应硫化矿连接。

N1点的厚度可用角砾岩型矿石内插

N1点的品位采用ZK1中品位(内插品位不妥)

C、氧化矿与原生矿对比标志不清楚

a、N1点往上采用槽探中氧化矿石的厚度和品位

b、N1点向下采用ZK2中硫化矿石的厚度与品位第94页,共110页,2024年2月25日,星期天五、矿体圈定③利用地表工程中氧化矿参与矿体连接的意义:

A、使勘查工程合理部署得到正确反映。

B、提高地表矿体的控制程度和研究程度,矿体在三度空间更加完整。

C、确保浅部较高储量类型。如不利用地表控矿工程,则视为地表“无矿”,矿体则变为隐伏矿体,第一排钻孔以上外推储量要作降级处理。第95页,共110页,2024年2月25日,星期天六、储量类型和块段划分目录(一)资源/储量分类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论