




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Contents
1.Preface 2
2.Significance 2
3.PerformanceIndicators 3
4.StandardProgress 4
5.KeyTechnologiesforNetworkEnergySaving 5
5.1NetworkArchitecture 5
5.1.1SAGINArchitecture 5
5.1.2NewDistributedRANArchitecture 6
5.1.3WirelessIntelligentCloudNetwork 9
5.2AirInterfaceEnergySavingTechnologies 10
5.2.1EnergySavingTechnologiesinSpatialDomain 10
5.2.2EnergySavingTechnologiesinTimeDomain 12
5.2.3EnergySavingTechnologiesinFrequencyDomain 13
5.2.4EnergySavingTechnologiesinPowerDomain 14
5.2.5NewAirInterfaceHardware 14
5.3IntegrationwithNewTechnologies 16
5.3.1IntegrationwithAITechnologies 16
5.3.2Integrationwith6GAirInterfaceTechnologies 19
5.4OtherTechnologies 20
6.SummaryandOutlook 22
7.References 23
8.MainContributors 24
9.Abbreviations 24
1/25
2/25
1.Preface
ThisWhitePaperdescribesthesignificanceandseriouschallengesof6Gnetworkenergysaving,brieflyintroducestheenergyconsumptionperformanceindicatorsandthestandardprogressof3GPPonnetworkenergysaving,andhighlightsthekeytechnicalsolutionsfornetworkenergysavinginaspects,suchasthenetworkarchitecture,energysavingtechnologiesforairinterfaces,integrationwithnewtechnologies,andothertechnologies.Finally,thisWhitePapersummarizesthemaincontentandrelatedconclusions,andlooksforwardtothefuturedevelopmenttrends.
2.Significance
Withtherapiddevelopmentofglobaleconomyandsciencetechnology,energyissuesarebecomingmoreandmoreprominent.Globalcarbondioxideemissionhasincreasedsignificantlysince2000.Withtherapidincreaseofcarbondioxideintheair,globaltemperaturerisesrapidly,andextremeweathersuchasstormsandheatwavescausedbyglobalwarmingseriouslyendangershumanlifeandproperty.
InChina,thedualcarbongoals,thatis,peakcarbondioxideemissionby2030andcarbonneutralizationby2060areincludedinthe14thFive-YearPlan.Thedualcarbongoalsaremajorresponsibilitiesoftheglobaltocopewithclimatechangesandimportantcornerstonesforsustainabledevelopmentofindustriesandenterprises.Inthetelecommunicationsindustry,carbondioxideemissionsaremainlyfromconsumedelectricity.Theenergyconsumptionofbasestations,communicationequipmentrooms,anddatacentersaccountsforthemajorproportionofthetotalenergyconsumption.Therefore,itiscriticaltosaveenergyfortheseitems.Theenergyconsumptionofa5Gbasestationatfullloadisabout3to4timesthatofa4Gbasestation.Especiallywiththeformalcommercialuseof5Gnetworks,energyconsumptionincreasessignificantly.
Thesixtypicalscenariosandfifteencapabilityindicators[1]proposedfor6Gposehigherrequirementsonspeed,capacity,latency,positioning,anduserexperiencefrommultipledimensionssuchasintelligence,sensing,andubiquity.Thisdrives6Gtohigherfrequency,largerbandwidth,andmorecomputingpower,whichbringsseverechallengesto6Gnetworkenergysaving.
I.Higherfrequency:Thecoverageradiusof6Gmillimeterwavebasestationsisonly30%thatof5G3.5GHzbasestations,andthepoweramplificationefficiencyof6Gmillimeterwavebasestationsisabout7%to15%.Thespecificvaluevariesdependingontheprocess.Forexample,itis7%+forthesilicon
3/25
germanium(SiGe)processand15%+forthegalliumnitride(GaN)process,whichisonly1/7to1/3thatoftraditional5Gbasestations.Therefore,moreenergyisrequiredtosupportnormaloperationofthepoweramplifier(PA)of6Gmillimeterwavebasestations.
II.Largerbandwidth:Largebandwidthandmultipleantennasarethemainfactorsforincreasedpowerconsumptionof5Gbasestations.Thepowerconsumptionofa5Gbasestationis3to4timesthatofa4Gbasestation.Accordingtotheintergenerationalgrowthpatternofbandwidth,itisexpectedthatthe6Gbandwidthcanreach500MHzto1GHz.Ifthetransmitpowerperunitofbandwidthremainsunchanged,itisestimatedthatthetransmitpowerof6Gbasestationsismorethanfivetimesthatof5Gbasestations,andtheoverallpowerconsumptionofa6Gbasestationismorethanfourtimesthatofa5Gbasestation.
III.Morecomputingpower:Endogenousintelligenceisanimportantfeatureof6G.Commonlyusedartificialintelligence(AI)modelsincludeadozenofmegabytestohundredsofgigabytesofmodelparameters.Forexample,ChatGPTcontains175billionmodelparameters,anduses10,000V100GPUsformodeltraining.AccordingtoaroughcalculationbytheGlobalZeroEmissionResearchCenter(GZR),itspowerconsumptionexceeds1.68millionkilowatt-hours.Ifthenumberofvisitorsperdayis1million,about12,000kilowatt-hoursofelectricityareconsumedeveryday.
Greenandenergysavingshouldbethebasicprinciplesfordevelopingnewinnovative6Gtechnologies,soastoimprovesystemenergyefficiencyandimplementagreenandecologicaloperatingmodel.Inaddition,6Gtechnologiesshouldempowerthousandsofindustriestohelpallwalksoflifeperformdigitaltransformationthoroughly,implementgreendevelopmentstrategies,andjointlywriteanewchapterofasharedfutureforthemankind.
3.PerformanceIndicators
Energyefficiencyisanimportantperformanceindicatorforevaluatingnetworkenergyconsumption.Wecanfindeffectivemethodsfornetworkenergysavingfromthedefinitionofenergyefficiency.
Energyefficiencyisdefinedinacademicresearchastheamountofdatathatcanbetransmittedunderunitofenergyconsumedandismeasuredinbit/joule(bit/J).Toimproveenergyefficiency,wecanconsidertheamountofdatatransmittedandenergyconsumption.First,wecaneffectivelyimprovethetransmissionrate.Second,wecanreducetheenergyconsumedfortransmittingtheunitamountofdata.
4/25
Inaddition,theinternationaltelecommunicationunion(ITU)definestheenergyefficiencyoftraditional5Gnetworksastheairinterfacecapabilities[2]thatarerelatedtoprovidedservicesandusedtominimizeenergyconsumptionoftheradioaccessnetwork(RAN).Theenergyefficiencyincludestwofactors:(1)Networkside:thenumberofinformationbitstransmittedorreceivedbytheuserequipment(UE)ontheRANperunitofenergyconsumed;(2)UEside:unitofenergyconsumedbycommunicationmodules,measuredinbit/J[3].Therefore,toimprovenetworkenergyefficiencyandachievenetworkenergysaving,wecantakemeasuresfromthenetworkandUE.
As6Gappliestodiversifiedapplicationscenarioswithdifferenttransmissionperformancerequirementsonairinterfaces,thenetworkenergyefficiencycanbedefinedastheratiooftheperformanceindicatortothepowerconsumptioninaspecificscenario.Thishelpsreflecttheactualperformancerequirementsandenergyconsumptioninthescenariomorecomprehensivelyandobjectively.
Specifically,energyefficiencycanbedefinedasthedatarateperunitofenergyconsumedinhigh-speedscenarios,measuredinbps/J,thetransmissionlatencyperunitofenergyconsumedinlow-latencyscenarios,measuredins/J,andthecoveragedistanceperunitofenergyconsumedinwidecoveragescenarios,measuredinm/J.Similarly,inintegrated6Gscenarios,theenergyefficiencycanbeconsideredinmultipledimensions.Theenergyefficiencycorrespondstoperformanceindicatorsin6Gscenarios,whichhelpsevaluatetheairinterfaceperformanceperunitofenergyconsumedmorecomprehensivelyandmeetrequirementsindiversified6Gapplicationscenarios.
4.StandardProgress
3GPP,aninternationalmobilecommunicationstandardorganization,carriedoutdiscussionsonnetworkenergysavingtechnologiesinRelease18,whichincludesthestudyitem(SI)andworkitem(WI).
(1)SIStage
AttheRANmeeting#94eheldinDecember2021,theresearchcontentofnetworkenergysavingwasformallydetermined,whichmainlyincludesthefollowingthreeaspects:
.Establishanenergyconsumptionsimulationmodelforbasestationstoevaluatetheperformanceofnetworkenergysavingsolutions.
.ProvideevaluationmethodsandKPIsfornetworkenergysaving.
5/25
.ResearchandidentifyenergysavingtechnologiesonthegNBandUEsides.
TheSIstagelastsfornearlyoneyear,focusesonthesimulationmodelsandevaluationmethodsfornetworkenergysaving,andthenetworkenergysavingtechnologiesintime,frequency,spatial,andpowerdomains,UEauxiliaryinformation,andotheraspects,andprovidesthesimulationresults.RelatedresearchcontentformsTR38.864[4].
(2)WIStage
BasedontheresearchprogressintheSIstage,theWIstagefocusesonsometechnologieswithhighenergysavinggains.AttheRANmeeting#98heldinDecember2022,theworkcontentofnetworkenergysavingwasdeterminedasfollows:
.Networkenergysavingtechnologiesinspatialandpowerdomainsbasedonchannelstateinformation(CSI)enhancement
.Celldiscontinuoustransmission/reception(DTX/DRX)
.SSB-lessSCellininter-bandmulti-carrier(CA)scenarios(applicableonlytoFR1andco-locatedcells)
.SolutionforpreventinglegacyUEsfromcampingincellsimplementingRel-18networkenergysavingtechnologies
.Inter-nodebeamactivationandenhancedpagingwithinlimitedareas
.Enhancedcellhandoverprocess
SomenetworkenergysavingtechnologiesstudiedintheSIstagearenotstandardized.Tofurtherreducenetworkenergyconsumptionandlaythefoundationfor6G,3GPPRelease19furtherstandardizesnetworkenergysaving.
5.KeyTechnologiesforNetworkEnergySaving
5.1NetworkArchitecture
5.1.1SAGINArchitecture
FuturenetworkswillrealizetheInternetofEverything(IoE),andmorenaturalspaces,suchasspace,air,ground,andoceanwillbecovered,ensuringubiquitousconnectivityinalldomains.Asdigitalizationisacceleratedinallwalksoflife,digitalinfrastructureinalldomainswillbeexpandedrapidly,andthecontradictionbetweenthedevelopmentofdigitaleconomyandtheincreaseofenergyconsumptionandcarbondioxideemissionwillbecomeincreasinglyprominent.
6/25
Greenandenergysavingwillbecomeendogenousdemandsforfuture6Gnetworkarchitecture.ToachievethedevelopmentgoalsofIoE,green,andlowcarbon,the6Gnetworkarchitecturewillundergoasubversivereconstruction.Thelegacyborderedandchimney-likeRANarchitecturewillbeconvertedtothespace-air-groundintegratednetwork(SAGIN)architecturefeaturingubiquitous,green,andenergysaving.
TheSAGINarchitectureconsistsofthreelayers:satellitenetwork,airbornenetwork,andlow-altitudeandgroundnetwork,formingathree-dimensionalall-domaincoveragenetworkbasedonterrestrialnetworksandexpandedbynon-terrestrialnetworks.Theterrestrialandnon-terrestrialnetworksare
interconnectedanddeeplyintegrated,useaunifiedprotocolstack,andsupportperception-free,simplified,andubiquitousaccessofmassivevolumeofusers.Theterrestrialandnon-terrestrialnetworkscanusenewnetworkingmodessuchassupercellularandnon-cellularthatareinlinewiththedevelopmenttrendofgreencommunication.Inthesupercellulararchitecture,thecontrolplaneanduserplaneofabasestationaredecoupled,andcontrolandservicebasestationscanbedeployedindependentlyasrequired.ThecontrolbasestationconnectstoUEs,transmitscontrolsignals,andcanadoptthelargeareacoveragemode.Theservicebasestationprovidesuserswithhigh-speeddatatransmissionandcanbeflexiblydeployedasrequired.Multipleservicebasestationscanbedeployedwithinthecoverageofacontrolbasestation,andtheservicebasestationscandynamicallysleepbasedonchangesinserviceload.Inthisarchitecture,networkcoveragecanbedynamicallyadjustedbasedonservicerequirements.Whenthecoverageperformanceisnotaffected,servicebasestationscansleepatappropriatetime,ensuringmoreflexiblesleepandimprovingnetworkenergysaving.Thenon-cellulararchitectureisUE-centered,withmultipledistributedaccesspoints(APs)andacentralizedunit(CU)connectedtoallAPsdeployed.ThroughcentralizedsignalprocessingoftheCU,widelydistributedAPscanachievehigh-levelcollaborationandformasuperbasestationthatcoverstheentirearea.EachUEaccessesaspecificgroupofAPs.Spatialmacrodiversityandlowpathlosscanbeusedtoimprovethespectralefficiencyandenergyefficiencyofthenetwork.Whentherearefewusersinanarea,someAPscanbeshutdowntofurtherreducesystemenergyconsumption[5][6].
5.1.2NewDistributedRANArchitecture
Tobettersupportverticalindustriessuchasautonomousdriving,intelligentmanufacturing,andtelemedicine,therearehigherlatencyandreliabilityrequirements.Especiallyforubiquitousconnectionsoffuture6Gnetworks,the
7/25
traditionalcentralizedintelligentnetworkarchitecturecannotmeettherequirements.Therefore,theindustryhasproposedaseriesofnewdistributedRANarchitectures,whichintroduceadistributedintelligentcomputingframeworktofullyutilizethemulti-dimensionaldataandcomputingresourcesheldbyUEsandnodes.However,thenewdistributedRANarchitecturefacesmanychallenges,suchascontinuousexpansionofdistributednodes,transmissionofmassivevolumeofhigh-dimensionalmodelparameters,andsupercomputingpower.Asaresult,6Gnetworkenergyconsumptionhasbecomeoneofthemainbottlenecksforitslarge-scaledeploymentandwidespreadapplication.Thedistributed,hierarchical,andintelligentRANarchitecturedesignisadoptedtoeffectivelyreducetheenergyconsumptionofthe6GdistributedRAN[7].
AstheRANadoptsamulti-layernetworktopology,intelligentfunctionalcomponentscanbedeployedatdifferentlayers,suchasmacro/microbasestations,CU/DU,cloud/edgetocarryoutwirelessdistributedlearning.Frombottomtotop,thearchitectureconsistsoftheintelligentUElayer,thefirstintelligencelayerdeployedontheDU,thesecondintelligencelayerdeployedontheCU,thethirdintelligencelayerdeployedontheedgenode,andthefourthintelligencelayerdeployedonthecloud,asshowninthefollowingfigure.Differentintelligentlayersgeneratedifferentfunctionalconfigurationsfordifferentgoals,buildingadistributed,hierarchical,andintelligentRANarchitecturefor6Gnetworks.Onthenetwork,intelligentfunctionalcomponentscanbeflexiblyandquicklyorchestratedandused,multi-leveldataanalysisnetworkelementscanbedeployed,andadistributedcollaborativecontrolsystemcanbeformedatallnetworklayerstoachievedistributedintelligentinteractionandcollaborationbetweenwirelessnodeshorizontally[8].
8/25
Figure1SchematicDiagramofHierarchicalDeploymentofIntelligentFunctionalComponentsofa6GNetwork
InthenewdistributedRANarchitecture,federatedlearning(FL),asthemostpromisingdistributedintelligentcomputingframeworkfor6Ginfrastructure,canconductbroadermachinelearning(ML)whileprotectinguserdataprivacy.Itisexpectedtoplayanimportantrolein6Gintelligentservicesandapplications.ThroughintegrationbetweenFLandmulti-layernetworktopology,multi-levelfederatedaggregationcanbeperformed.Asshowninthefollowingfigure,athree-layernetwork(macrobasestation-microbasestation-UE)formsanFL-based,distributed,hierarchical,andintelligentRANarchitectureintheverticaldirection.Federatedaggregationcanbesplitintolow-levelfederatedaggregationatmicrobasestationsandhigh-levelfederatedaggregationatmacrobasestations.Thisensureslowcommunicationcostsandwiderdatasharing.
Figure2SchematicDiagramofFLNodeDeploymentatMultipleLayersofa6GNetwork
Specifically,ontheedgenetwork,earlymodelaggregationhaslowcommunicationcostsandcaneffectivelyalleviateuncertainmodelupdatesduetorandomlocaldata.Latermodelaggregationperformsmodelaggregationandupdatethroughhigh-levelFLservers,achievingmoreandwiderdatasharingandacceleratingconvergenceofglobalaggregation.Therefore,federatedaggregationcanbeflexiblydeployedatdifferentnetworklayersbasedontheactualneedsofthenetworkforlearningperformance,latency,capacity,energyconsumption,andotherindicatorstoachievedynamicmulti-levelFL.
Tobettersavenetworkenergy,thecommunicationfrequencyofhigh-levelglobalaggregationwithhighcommunicationcostscanbereduced.Thisreducesthecommunicationoverhead,soastoreducethetotalenergyconsumption.ComparedwiththetraditionalFLsolution,thedistributed,hierarchical,and
9/25
intelligentRANarchitecturethatintroducesmulti-levelfederatedaggregationcaneffectivelyreducenetworkenergyconsumptionunderthesamelearningaccuracy.
5.1.3WirelessIntelligentCloudNetwork
TheIMT-2030Framework[9]highlightstheimportanceofenvironmentaladaptabilityandenergysavingandemissionreductionofnetworksandUEs.Networkenergyefficiencyisaquantitativeindicatorthatattractsthemostattention,whichismeasuredinbit/Joule.
Around2010,majoroperatorsinChinasharedtheirobservationsonenergyconsumptionofmobilenetworks.Itwasfoundthathalfoftheenergyconsumptionisfromairconditionersandotherfacilities,andcentralizedRANdeviceswereproposedtoreduceenergyconsumption,whichiscalledcloudRAN(C-RAN).Thefocuscanbeontheradioorbasebandprocessing,asshowninthefollowingfigure.
Figure3C-RANSchematicDiagram
Accordingtoanalysis[10][11],C-RANiseco-friendlyinfrastructure.First,centralizedprocessingoftheC-RANarchitecturecanexponentiallyreducethenumberofbasestationsandsignificantlyreducepowerconsumptionofon-sitesupportdevices,suchasairconditioners.Second,thecooperativeradiotechnologycanreduceinterferencebetweenremoteradioheads(RRHs)andallowdenserRRHs.Therefore,thedistancefromRRHstoUEscanbeshortened,andsmallercellswithlowertransmitpowercanbedeployedwithoutaffectingnetworkcoveragequality.Theenergyrequiredforsignaltransmissionwillbereduced.ThishelpsreducepowerconsumptionintheRANandextendthebatterystandbytimeofUEs.Finally,thebasebandunit(BBU)poolisasharedresourceamongalargenumberofvirtualbasestations.Therefore,higherresourceutilizationandlowerpowerconsumptioncanbeachieved.Whenavirtualbasestationisidleatnightanddoesnotrequiremostofitsprocessingcapabilities,itcanbeshutdownorenterthelower-powerstate,whichdoesnotaffectthe24/7servicecommitment.
OpenRAN(O-RAN)inheritstheadvantagesofC-RANanddefinesopen
10/25
interfacesofO-CU/O-DU/O-RU.Thisensuresflexibleanalysisofthepowerconsumptionofdifferentnetworkentities.Thereport[12]pointsoutthatformostmobilenetworks,morethan80%ofenergyconsumptionisfromtheRAN,withtherestfromthecorenetwork,supportsystems,andrelatedcloudinfrastructure.Itisestimatedthatofthe80%energyconsumedontheRAN,approximately80%ofitisusedtopowerradios,andtheremaining20%ofitisusedfordistributedunits(DUs).Radioenergyconsumptioncanbegreatlyreducedbyusingnewtechnologies,suchasMicroSleepTxandmulti-bandradiodevicedesignandintegration.Inaddition,withahigh-performancegeneral-purposeprocessor,thecloud-basedDUconsumeslessenergyandiscompatiblewiththesoftwaredevelopmentecosystem.Torealizeitsfullpotential,theSMO/RICsoftwareiscarefullydesigned,andtherAPPmeetstheautomatedandnon-real-timenetworkmanagementrequirements.Thishelpsreduceoperatingcosts,improvenetworkperformance,andreduceenergyconsumption.
3GPPcarriedoutdiscussionsandstandardworkonnetworkenergysavingtechnologiesinRelease18andRelease19.Fordetails,seeChapter4.3GPPpointsoutthepotentialdirectionsforreducingRANenergyconsumption.TheO-RANarchitectureseparatesnetworkentitiesandprogrammablerAPPs,maximizingflexibility.Integratingnewenergysavingfeatures,theO-RANarchitectureisexpectedtobringbrightprospectsinthe6Gera.
5.2AirInterfaceEnergySavingTechnologies
5.2.1EnergySavingTechnologiesinSpatialDomain
ThepowerconsumptionoftheActiveAntennaUnit(AAU)accountsforabout80%thatofanNRbasestationandisthemaincomponentofnetworkenergyconsumption.Withtolerablesystemperformanceloss,spatialdomainenergysavingtechnologiescanadapttospatialelementsonthenetworktosignificantlyreducenetworkenergyconsumption.Dependingonthegranularity,spatialelementsmayincludeantennaelements,TxRUs,antennaports,antennapanels,andtransmissionandreceptionpoints(TRPs).Comparedwithsemi-staticspatialelementadaptation,dynamicspatialelementadaptationensuresfineradaptationgranularity,bettermatchestheserviceloadandactualtransmissionenvironment,andbetterservesUEs,thereforereducingenergyconsumptionofnetworks.
Massivemultiple-inputmultiple-output(MIMO)iswidelyusedonexisting5Gnetworksbecauseitsupportsspatialdomainmultiplexingormultipathdiversity.EventhoughmassiveMIMObringslargecapacity,italsoincreasespowerconsumptionofbasestationsduetoitslargenumberofTxRUsandrelatedhardwareprocessingunits(includingPAs).Aneffectivenetworkenergysaving
11/25
solutionturnson/offTxRUsofbasestationsbasedonthetrafficloadorthenumberofUEsserved.Asshowninthefollowingfigure,whenthenumberofUEsinacellbecomessmall,someTxRUsofbasestationscanbeturnedoffsothatthepowerconsumptionofbasestationscanbereducedwithoutaffectingthecapacity.LegacyspatialdomainshutdownsolutionscannotshutdownTxRUsdynamicallyandquickly.Forexample,thereisobviouscapacitylosswhenpowersavinggainsareobtained,orthesolutionscannotbeusedaroundtheclockbecausetheswitchingtimeforstaticshutdownistoolong.Asaresult,theantennastatusofabasestationcannotbequicklyadjustedbasedonthechannelstatus,thatis,theantennastatusdoesnotmatchthechannelstatus,resultinginagreatperformanceloss.
Figure4AdaptiveandDynamicTxRUShutdown
BasedonthedynamicloadandmultiplesetsofCSIcorrespondingtodifferentTxRUshutdownmodes,theentiretimeisdividedintomanymillisecond-levelschedulingwindows.Advanceddynamicshutdownusesadynamicschedulertomaximizeenergysavinggainswithlimitedcapacitylossbasedonenergyefficiency.Ineachschedulingwindow,allshutdownmodes(includingnoshutdown)aresimulatedandtraversed,soastoquicklyselecttheoptimalshutdownmode.Inthedynamicshutdownsolution,thehardwareresponsetimeinenergy-savingstateisakeyfactoraffectingnetworkindicatorsanduserexperience.Thehardwareresponsetimeneedstobeshortenedfromminute-leveltomillisecond-level,sothatenergyissavedallthetimeinsteadofidletimeonly.Inaddition,thenumberofhigh-levelconfigurationparametersforCSIreportsislimited.IftoomanyCSIreportsareconfiguredforadaptivechannelshutdown,theconfigurationofCSIreportsforotherusesmaybeaffected.Therefore,animportantresearchdirectioninthedynamicTxRUshutdownsolutionisCSIreportenhancementthatis,reportingmultiplesetsofCSIinoneCSIreportandreducingCSIoverhead.
ChannelshutdowncanreducethepowerconsumptionofthePA,andstaticpowerconsumptionoftheradiofrequency(RF)channel.Spatialdomainenergysavingtechnologiesbasedonchannelshutdownhaveobviousadvantagesinensuringservicecontinuity,arenotlimitedtobasestationswithlowserviceload,andareregardedasprevailingsolutionsforspatialdomainenergysaving.
12/25
Large-scaledistributedantennassupportmulti-TRP.Thatis,multipleantennapanelscanberegardedasapartoftheAAUinspatialdomain.Semi-static/dynamicadaptivemulti-TRPadjustmentisaspecialcaseofadaptivetransmissionantennaadjustment.Inactualtransmission,abettertransmissionlink(forexample,closerphysicaldistance)mayexistbetweenaUEandaTRP.AsusingmultipleTRPstotransmitdatafortheUEisnotalwaysnecessary,dynamicallyshuttingdownsomeTRPscansignificantlyreducethenetworkenergyconsumption.EspeciallyinfuturetransmissionsystemsthatdeploydistributedmassiveMIMOarraystosupportshort-rangetransmission,moreTRPsareusedfortransmission.Dynamicmulti-TRPshutdowncanbetterbalanceUEperformanceandnetworkenergyconsumption.
5.2.2EnergySavingTechnologiesinTimeDomain
Inmediumandlowsystemloadscenarios,methodssuchasdynamicandintelligentcellshutdown,intelligentDTX/DRXcoordination,andadaptivereductionofbroadcastsignaltransmissiontimeareusedtoensure
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳斯莱斯魅影购车合同范本
- 为要使用合同范本
- pvc销售合同范本
- 代办旅游合同范本
- 兼职司机 合同范本
- 养生店合同范本
- 分期车辆协议合同范本
- 2024年上海健康医学院招聘考试真题
- 北京一对一合伙合同范本
- 下铺门店转让合同范本
- 2025年山西杏花村汾酒集团限责任公司人才招聘71名高频重点提升(共500题)附带答案详解
- 贵州黔源电力股份有限公司招聘笔试冲刺题2025
- 2025年江苏省环保集团招聘笔试参考题库含答案解析
- 新修订中华人民共和国畜牧法全文解读学习
- 物业管理服务内容标准及质量保证措施
- 统编版语文五年级下册第二单元习作:写读后感课件
- 学校提高《规范书写水平、传承汉字文化》活动方案3篇
- 幕墙施工现场安全检查方案
- 2023年4月2日湖北事业单位联考C类《职业能力倾向测验》试题
- 主持课课件教学课件
- 第四节-全电路欧姆定律
评论
0/150
提交评论