2024 全球6G技术大会 -10.0P Network Energy Saving Technology White Paper-final-20240409_第1页
2024 全球6G技术大会 -10.0P Network Energy Saving Technology White Paper-final-20240409_第2页
2024 全球6G技术大会 -10.0P Network Energy Saving Technology White Paper-final-20240409_第3页
2024 全球6G技术大会 -10.0P Network Energy Saving Technology White Paper-final-20240409_第4页
2024 全球6G技术大会 -10.0P Network Energy Saving Technology White Paper-final-20240409_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Contents

1.Preface 2

2.Significance 2

3.PerformanceIndicators 3

4.StandardProgress 4

5.KeyTechnologiesforNetworkEnergySaving 5

5.1NetworkArchitecture 5

5.1.1SAGINArchitecture 5

5.1.2NewDistributedRANArchitecture 6

5.1.3WirelessIntelligentCloudNetwork 9

5.2AirInterfaceEnergySavingTechnologies 10

5.2.1EnergySavingTechnologiesinSpatialDomain 10

5.2.2EnergySavingTechnologiesinTimeDomain 12

5.2.3EnergySavingTechnologiesinFrequencyDomain 13

5.2.4EnergySavingTechnologiesinPowerDomain 14

5.2.5NewAirInterfaceHardware 14

5.3IntegrationwithNewTechnologies 16

5.3.1IntegrationwithAITechnologies 16

5.3.2Integrationwith6GAirInterfaceTechnologies 19

5.4OtherTechnologies 20

6.SummaryandOutlook 22

7.References 23

8.MainContributors 24

9.Abbreviations 24

1/25

2/25

1.Preface

ThisWhitePaperdescribesthesignificanceandseriouschallengesof6Gnetworkenergysaving,brieflyintroducestheenergyconsumptionperformanceindicatorsandthestandardprogressof3GPPonnetworkenergysaving,andhighlightsthekeytechnicalsolutionsfornetworkenergysavinginaspects,suchasthenetworkarchitecture,energysavingtechnologiesforairinterfaces,integrationwithnewtechnologies,andothertechnologies.Finally,thisWhitePapersummarizesthemaincontentandrelatedconclusions,andlooksforwardtothefuturedevelopmenttrends.

2.Significance

Withtherapiddevelopmentofglobaleconomyandsciencetechnology,energyissuesarebecomingmoreandmoreprominent.Globalcarbondioxideemissionhasincreasedsignificantlysince2000.Withtherapidincreaseofcarbondioxideintheair,globaltemperaturerisesrapidly,andextremeweathersuchasstormsandheatwavescausedbyglobalwarmingseriouslyendangershumanlifeandproperty.

InChina,thedualcarbongoals,thatis,peakcarbondioxideemissionby2030andcarbonneutralizationby2060areincludedinthe14thFive-YearPlan.Thedualcarbongoalsaremajorresponsibilitiesoftheglobaltocopewithclimatechangesandimportantcornerstonesforsustainabledevelopmentofindustriesandenterprises.Inthetelecommunicationsindustry,carbondioxideemissionsaremainlyfromconsumedelectricity.Theenergyconsumptionofbasestations,communicationequipmentrooms,anddatacentersaccountsforthemajorproportionofthetotalenergyconsumption.Therefore,itiscriticaltosaveenergyfortheseitems.Theenergyconsumptionofa5Gbasestationatfullloadisabout3to4timesthatofa4Gbasestation.Especiallywiththeformalcommercialuseof5Gnetworks,energyconsumptionincreasessignificantly.

Thesixtypicalscenariosandfifteencapabilityindicators[1]proposedfor6Gposehigherrequirementsonspeed,capacity,latency,positioning,anduserexperiencefrommultipledimensionssuchasintelligence,sensing,andubiquity.Thisdrives6Gtohigherfrequency,largerbandwidth,andmorecomputingpower,whichbringsseverechallengesto6Gnetworkenergysaving.

I.Higherfrequency:Thecoverageradiusof6Gmillimeterwavebasestationsisonly30%thatof5G3.5GHzbasestations,andthepoweramplificationefficiencyof6Gmillimeterwavebasestationsisabout7%to15%.Thespecificvaluevariesdependingontheprocess.Forexample,itis7%+forthesilicon

3/25

germanium(SiGe)processand15%+forthegalliumnitride(GaN)process,whichisonly1/7to1/3thatoftraditional5Gbasestations.Therefore,moreenergyisrequiredtosupportnormaloperationofthepoweramplifier(PA)of6Gmillimeterwavebasestations.

II.Largerbandwidth:Largebandwidthandmultipleantennasarethemainfactorsforincreasedpowerconsumptionof5Gbasestations.Thepowerconsumptionofa5Gbasestationis3to4timesthatofa4Gbasestation.Accordingtotheintergenerationalgrowthpatternofbandwidth,itisexpectedthatthe6Gbandwidthcanreach500MHzto1GHz.Ifthetransmitpowerperunitofbandwidthremainsunchanged,itisestimatedthatthetransmitpowerof6Gbasestationsismorethanfivetimesthatof5Gbasestations,andtheoverallpowerconsumptionofa6Gbasestationismorethanfourtimesthatofa5Gbasestation.

III.Morecomputingpower:Endogenousintelligenceisanimportantfeatureof6G.Commonlyusedartificialintelligence(AI)modelsincludeadozenofmegabytestohundredsofgigabytesofmodelparameters.Forexample,ChatGPTcontains175billionmodelparameters,anduses10,000V100GPUsformodeltraining.AccordingtoaroughcalculationbytheGlobalZeroEmissionResearchCenter(GZR),itspowerconsumptionexceeds1.68millionkilowatt-hours.Ifthenumberofvisitorsperdayis1million,about12,000kilowatt-hoursofelectricityareconsumedeveryday.

Greenandenergysavingshouldbethebasicprinciplesfordevelopingnewinnovative6Gtechnologies,soastoimprovesystemenergyefficiencyandimplementagreenandecologicaloperatingmodel.Inaddition,6Gtechnologiesshouldempowerthousandsofindustriestohelpallwalksoflifeperformdigitaltransformationthoroughly,implementgreendevelopmentstrategies,andjointlywriteanewchapterofasharedfutureforthemankind.

3.PerformanceIndicators

Energyefficiencyisanimportantperformanceindicatorforevaluatingnetworkenergyconsumption.Wecanfindeffectivemethodsfornetworkenergysavingfromthedefinitionofenergyefficiency.

Energyefficiencyisdefinedinacademicresearchastheamountofdatathatcanbetransmittedunderunitofenergyconsumedandismeasuredinbit/joule(bit/J).Toimproveenergyefficiency,wecanconsidertheamountofdatatransmittedandenergyconsumption.First,wecaneffectivelyimprovethetransmissionrate.Second,wecanreducetheenergyconsumedfortransmittingtheunitamountofdata.

4/25

Inaddition,theinternationaltelecommunicationunion(ITU)definestheenergyefficiencyoftraditional5Gnetworksastheairinterfacecapabilities[2]thatarerelatedtoprovidedservicesandusedtominimizeenergyconsumptionoftheradioaccessnetwork(RAN).Theenergyefficiencyincludestwofactors:(1)Networkside:thenumberofinformationbitstransmittedorreceivedbytheuserequipment(UE)ontheRANperunitofenergyconsumed;(2)UEside:unitofenergyconsumedbycommunicationmodules,measuredinbit/J[3].Therefore,toimprovenetworkenergyefficiencyandachievenetworkenergysaving,wecantakemeasuresfromthenetworkandUE.

As6Gappliestodiversifiedapplicationscenarioswithdifferenttransmissionperformancerequirementsonairinterfaces,thenetworkenergyefficiencycanbedefinedastheratiooftheperformanceindicatortothepowerconsumptioninaspecificscenario.Thishelpsreflecttheactualperformancerequirementsandenergyconsumptioninthescenariomorecomprehensivelyandobjectively.

Specifically,energyefficiencycanbedefinedasthedatarateperunitofenergyconsumedinhigh-speedscenarios,measuredinbps/J,thetransmissionlatencyperunitofenergyconsumedinlow-latencyscenarios,measuredins/J,andthecoveragedistanceperunitofenergyconsumedinwidecoveragescenarios,measuredinm/J.Similarly,inintegrated6Gscenarios,theenergyefficiencycanbeconsideredinmultipledimensions.Theenergyefficiencycorrespondstoperformanceindicatorsin6Gscenarios,whichhelpsevaluatetheairinterfaceperformanceperunitofenergyconsumedmorecomprehensivelyandmeetrequirementsindiversified6Gapplicationscenarios.

4.StandardProgress

3GPP,aninternationalmobilecommunicationstandardorganization,carriedoutdiscussionsonnetworkenergysavingtechnologiesinRelease18,whichincludesthestudyitem(SI)andworkitem(WI).

(1)SIStage

AttheRANmeeting#94eheldinDecember2021,theresearchcontentofnetworkenergysavingwasformallydetermined,whichmainlyincludesthefollowingthreeaspects:

.Establishanenergyconsumptionsimulationmodelforbasestationstoevaluatetheperformanceofnetworkenergysavingsolutions.

.ProvideevaluationmethodsandKPIsfornetworkenergysaving.

5/25

.ResearchandidentifyenergysavingtechnologiesonthegNBandUEsides.

TheSIstagelastsfornearlyoneyear,focusesonthesimulationmodelsandevaluationmethodsfornetworkenergysaving,andthenetworkenergysavingtechnologiesintime,frequency,spatial,andpowerdomains,UEauxiliaryinformation,andotheraspects,andprovidesthesimulationresults.RelatedresearchcontentformsTR38.864[4].

(2)WIStage

BasedontheresearchprogressintheSIstage,theWIstagefocusesonsometechnologieswithhighenergysavinggains.AttheRANmeeting#98heldinDecember2022,theworkcontentofnetworkenergysavingwasdeterminedasfollows:

.Networkenergysavingtechnologiesinspatialandpowerdomainsbasedonchannelstateinformation(CSI)enhancement

.Celldiscontinuoustransmission/reception(DTX/DRX)

.SSB-lessSCellininter-bandmulti-carrier(CA)scenarios(applicableonlytoFR1andco-locatedcells)

.SolutionforpreventinglegacyUEsfromcampingincellsimplementingRel-18networkenergysavingtechnologies

.Inter-nodebeamactivationandenhancedpagingwithinlimitedareas

.Enhancedcellhandoverprocess

SomenetworkenergysavingtechnologiesstudiedintheSIstagearenotstandardized.Tofurtherreducenetworkenergyconsumptionandlaythefoundationfor6G,3GPPRelease19furtherstandardizesnetworkenergysaving.

5.KeyTechnologiesforNetworkEnergySaving

5.1NetworkArchitecture

5.1.1SAGINArchitecture

FuturenetworkswillrealizetheInternetofEverything(IoE),andmorenaturalspaces,suchasspace,air,ground,andoceanwillbecovered,ensuringubiquitousconnectivityinalldomains.Asdigitalizationisacceleratedinallwalksoflife,digitalinfrastructureinalldomainswillbeexpandedrapidly,andthecontradictionbetweenthedevelopmentofdigitaleconomyandtheincreaseofenergyconsumptionandcarbondioxideemissionwillbecomeincreasinglyprominent.

6/25

Greenandenergysavingwillbecomeendogenousdemandsforfuture6Gnetworkarchitecture.ToachievethedevelopmentgoalsofIoE,green,andlowcarbon,the6Gnetworkarchitecturewillundergoasubversivereconstruction.Thelegacyborderedandchimney-likeRANarchitecturewillbeconvertedtothespace-air-groundintegratednetwork(SAGIN)architecturefeaturingubiquitous,green,andenergysaving.

TheSAGINarchitectureconsistsofthreelayers:satellitenetwork,airbornenetwork,andlow-altitudeandgroundnetwork,formingathree-dimensionalall-domaincoveragenetworkbasedonterrestrialnetworksandexpandedbynon-terrestrialnetworks.Theterrestrialandnon-terrestrialnetworksare

interconnectedanddeeplyintegrated,useaunifiedprotocolstack,andsupportperception-free,simplified,andubiquitousaccessofmassivevolumeofusers.Theterrestrialandnon-terrestrialnetworkscanusenewnetworkingmodessuchassupercellularandnon-cellularthatareinlinewiththedevelopmenttrendofgreencommunication.Inthesupercellulararchitecture,thecontrolplaneanduserplaneofabasestationaredecoupled,andcontrolandservicebasestationscanbedeployedindependentlyasrequired.ThecontrolbasestationconnectstoUEs,transmitscontrolsignals,andcanadoptthelargeareacoveragemode.Theservicebasestationprovidesuserswithhigh-speeddatatransmissionandcanbeflexiblydeployedasrequired.Multipleservicebasestationscanbedeployedwithinthecoverageofacontrolbasestation,andtheservicebasestationscandynamicallysleepbasedonchangesinserviceload.Inthisarchitecture,networkcoveragecanbedynamicallyadjustedbasedonservicerequirements.Whenthecoverageperformanceisnotaffected,servicebasestationscansleepatappropriatetime,ensuringmoreflexiblesleepandimprovingnetworkenergysaving.Thenon-cellulararchitectureisUE-centered,withmultipledistributedaccesspoints(APs)andacentralizedunit(CU)connectedtoallAPsdeployed.ThroughcentralizedsignalprocessingoftheCU,widelydistributedAPscanachievehigh-levelcollaborationandformasuperbasestationthatcoverstheentirearea.EachUEaccessesaspecificgroupofAPs.Spatialmacrodiversityandlowpathlosscanbeusedtoimprovethespectralefficiencyandenergyefficiencyofthenetwork.Whentherearefewusersinanarea,someAPscanbeshutdowntofurtherreducesystemenergyconsumption[5][6].

5.1.2NewDistributedRANArchitecture

Tobettersupportverticalindustriessuchasautonomousdriving,intelligentmanufacturing,andtelemedicine,therearehigherlatencyandreliabilityrequirements.Especiallyforubiquitousconnectionsoffuture6Gnetworks,the

7/25

traditionalcentralizedintelligentnetworkarchitecturecannotmeettherequirements.Therefore,theindustryhasproposedaseriesofnewdistributedRANarchitectures,whichintroduceadistributedintelligentcomputingframeworktofullyutilizethemulti-dimensionaldataandcomputingresourcesheldbyUEsandnodes.However,thenewdistributedRANarchitecturefacesmanychallenges,suchascontinuousexpansionofdistributednodes,transmissionofmassivevolumeofhigh-dimensionalmodelparameters,andsupercomputingpower.Asaresult,6Gnetworkenergyconsumptionhasbecomeoneofthemainbottlenecksforitslarge-scaledeploymentandwidespreadapplication.Thedistributed,hierarchical,andintelligentRANarchitecturedesignisadoptedtoeffectivelyreducetheenergyconsumptionofthe6GdistributedRAN[7].

AstheRANadoptsamulti-layernetworktopology,intelligentfunctionalcomponentscanbedeployedatdifferentlayers,suchasmacro/microbasestations,CU/DU,cloud/edgetocarryoutwirelessdistributedlearning.Frombottomtotop,thearchitectureconsistsoftheintelligentUElayer,thefirstintelligencelayerdeployedontheDU,thesecondintelligencelayerdeployedontheCU,thethirdintelligencelayerdeployedontheedgenode,andthefourthintelligencelayerdeployedonthecloud,asshowninthefollowingfigure.Differentintelligentlayersgeneratedifferentfunctionalconfigurationsfordifferentgoals,buildingadistributed,hierarchical,andintelligentRANarchitecturefor6Gnetworks.Onthenetwork,intelligentfunctionalcomponentscanbeflexiblyandquicklyorchestratedandused,multi-leveldataanalysisnetworkelementscanbedeployed,andadistributedcollaborativecontrolsystemcanbeformedatallnetworklayerstoachievedistributedintelligentinteractionandcollaborationbetweenwirelessnodeshorizontally[8].

8/25

Figure1SchematicDiagramofHierarchicalDeploymentofIntelligentFunctionalComponentsofa6GNetwork

InthenewdistributedRANarchitecture,federatedlearning(FL),asthemostpromisingdistributedintelligentcomputingframeworkfor6Ginfrastructure,canconductbroadermachinelearning(ML)whileprotectinguserdataprivacy.Itisexpectedtoplayanimportantrolein6Gintelligentservicesandapplications.ThroughintegrationbetweenFLandmulti-layernetworktopology,multi-levelfederatedaggregationcanbeperformed.Asshowninthefollowingfigure,athree-layernetwork(macrobasestation-microbasestation-UE)formsanFL-based,distributed,hierarchical,andintelligentRANarchitectureintheverticaldirection.Federatedaggregationcanbesplitintolow-levelfederatedaggregationatmicrobasestationsandhigh-levelfederatedaggregationatmacrobasestations.Thisensureslowcommunicationcostsandwiderdatasharing.

Figure2SchematicDiagramofFLNodeDeploymentatMultipleLayersofa6GNetwork

Specifically,ontheedgenetwork,earlymodelaggregationhaslowcommunicationcostsandcaneffectivelyalleviateuncertainmodelupdatesduetorandomlocaldata.Latermodelaggregationperformsmodelaggregationandupdatethroughhigh-levelFLservers,achievingmoreandwiderdatasharingandacceleratingconvergenceofglobalaggregation.Therefore,federatedaggregationcanbeflexiblydeployedatdifferentnetworklayersbasedontheactualneedsofthenetworkforlearningperformance,latency,capacity,energyconsumption,andotherindicatorstoachievedynamicmulti-levelFL.

Tobettersavenetworkenergy,thecommunicationfrequencyofhigh-levelglobalaggregationwithhighcommunicationcostscanbereduced.Thisreducesthecommunicationoverhead,soastoreducethetotalenergyconsumption.ComparedwiththetraditionalFLsolution,thedistributed,hierarchical,and

9/25

intelligentRANarchitecturethatintroducesmulti-levelfederatedaggregationcaneffectivelyreducenetworkenergyconsumptionunderthesamelearningaccuracy.

5.1.3WirelessIntelligentCloudNetwork

TheIMT-2030Framework[9]highlightstheimportanceofenvironmentaladaptabilityandenergysavingandemissionreductionofnetworksandUEs.Networkenergyefficiencyisaquantitativeindicatorthatattractsthemostattention,whichismeasuredinbit/Joule.

Around2010,majoroperatorsinChinasharedtheirobservationsonenergyconsumptionofmobilenetworks.Itwasfoundthathalfoftheenergyconsumptionisfromairconditionersandotherfacilities,andcentralizedRANdeviceswereproposedtoreduceenergyconsumption,whichiscalledcloudRAN(C-RAN).Thefocuscanbeontheradioorbasebandprocessing,asshowninthefollowingfigure.

Figure3C-RANSchematicDiagram

Accordingtoanalysis[10][11],C-RANiseco-friendlyinfrastructure.First,centralizedprocessingoftheC-RANarchitecturecanexponentiallyreducethenumberofbasestationsandsignificantlyreducepowerconsumptionofon-sitesupportdevices,suchasairconditioners.Second,thecooperativeradiotechnologycanreduceinterferencebetweenremoteradioheads(RRHs)andallowdenserRRHs.Therefore,thedistancefromRRHstoUEscanbeshortened,andsmallercellswithlowertransmitpowercanbedeployedwithoutaffectingnetworkcoveragequality.Theenergyrequiredforsignaltransmissionwillbereduced.ThishelpsreducepowerconsumptionintheRANandextendthebatterystandbytimeofUEs.Finally,thebasebandunit(BBU)poolisasharedresourceamongalargenumberofvirtualbasestations.Therefore,higherresourceutilizationandlowerpowerconsumptioncanbeachieved.Whenavirtualbasestationisidleatnightanddoesnotrequiremostofitsprocessingcapabilities,itcanbeshutdownorenterthelower-powerstate,whichdoesnotaffectthe24/7servicecommitment.

OpenRAN(O-RAN)inheritstheadvantagesofC-RANanddefinesopen

10/25

interfacesofO-CU/O-DU/O-RU.Thisensuresflexibleanalysisofthepowerconsumptionofdifferentnetworkentities.Thereport[12]pointsoutthatformostmobilenetworks,morethan80%ofenergyconsumptionisfromtheRAN,withtherestfromthecorenetwork,supportsystems,andrelatedcloudinfrastructure.Itisestimatedthatofthe80%energyconsumedontheRAN,approximately80%ofitisusedtopowerradios,andtheremaining20%ofitisusedfordistributedunits(DUs).Radioenergyconsumptioncanbegreatlyreducedbyusingnewtechnologies,suchasMicroSleepTxandmulti-bandradiodevicedesignandintegration.Inaddition,withahigh-performancegeneral-purposeprocessor,thecloud-basedDUconsumeslessenergyandiscompatiblewiththesoftwaredevelopmentecosystem.Torealizeitsfullpotential,theSMO/RICsoftwareiscarefullydesigned,andtherAPPmeetstheautomatedandnon-real-timenetworkmanagementrequirements.Thishelpsreduceoperatingcosts,improvenetworkperformance,andreduceenergyconsumption.

3GPPcarriedoutdiscussionsandstandardworkonnetworkenergysavingtechnologiesinRelease18andRelease19.Fordetails,seeChapter4.3GPPpointsoutthepotentialdirectionsforreducingRANenergyconsumption.TheO-RANarchitectureseparatesnetworkentitiesandprogrammablerAPPs,maximizingflexibility.Integratingnewenergysavingfeatures,theO-RANarchitectureisexpectedtobringbrightprospectsinthe6Gera.

5.2AirInterfaceEnergySavingTechnologies

5.2.1EnergySavingTechnologiesinSpatialDomain

ThepowerconsumptionoftheActiveAntennaUnit(AAU)accountsforabout80%thatofanNRbasestationandisthemaincomponentofnetworkenergyconsumption.Withtolerablesystemperformanceloss,spatialdomainenergysavingtechnologiescanadapttospatialelementsonthenetworktosignificantlyreducenetworkenergyconsumption.Dependingonthegranularity,spatialelementsmayincludeantennaelements,TxRUs,antennaports,antennapanels,andtransmissionandreceptionpoints(TRPs).Comparedwithsemi-staticspatialelementadaptation,dynamicspatialelementadaptationensuresfineradaptationgranularity,bettermatchestheserviceloadandactualtransmissionenvironment,andbetterservesUEs,thereforereducingenergyconsumptionofnetworks.

Massivemultiple-inputmultiple-output(MIMO)iswidelyusedonexisting5Gnetworksbecauseitsupportsspatialdomainmultiplexingormultipathdiversity.EventhoughmassiveMIMObringslargecapacity,italsoincreasespowerconsumptionofbasestationsduetoitslargenumberofTxRUsandrelatedhardwareprocessingunits(includingPAs).Aneffectivenetworkenergysaving

11/25

solutionturnson/offTxRUsofbasestationsbasedonthetrafficloadorthenumberofUEsserved.Asshowninthefollowingfigure,whenthenumberofUEsinacellbecomessmall,someTxRUsofbasestationscanbeturnedoffsothatthepowerconsumptionofbasestationscanbereducedwithoutaffectingthecapacity.LegacyspatialdomainshutdownsolutionscannotshutdownTxRUsdynamicallyandquickly.Forexample,thereisobviouscapacitylosswhenpowersavinggainsareobtained,orthesolutionscannotbeusedaroundtheclockbecausetheswitchingtimeforstaticshutdownistoolong.Asaresult,theantennastatusofabasestationcannotbequicklyadjustedbasedonthechannelstatus,thatis,theantennastatusdoesnotmatchthechannelstatus,resultinginagreatperformanceloss.

Figure4AdaptiveandDynamicTxRUShutdown

BasedonthedynamicloadandmultiplesetsofCSIcorrespondingtodifferentTxRUshutdownmodes,theentiretimeisdividedintomanymillisecond-levelschedulingwindows.Advanceddynamicshutdownusesadynamicschedulertomaximizeenergysavinggainswithlimitedcapacitylossbasedonenergyefficiency.Ineachschedulingwindow,allshutdownmodes(includingnoshutdown)aresimulatedandtraversed,soastoquicklyselecttheoptimalshutdownmode.Inthedynamicshutdownsolution,thehardwareresponsetimeinenergy-savingstateisakeyfactoraffectingnetworkindicatorsanduserexperience.Thehardwareresponsetimeneedstobeshortenedfromminute-leveltomillisecond-level,sothatenergyissavedallthetimeinsteadofidletimeonly.Inaddition,thenumberofhigh-levelconfigurationparametersforCSIreportsislimited.IftoomanyCSIreportsareconfiguredforadaptivechannelshutdown,theconfigurationofCSIreportsforotherusesmaybeaffected.Therefore,animportantresearchdirectioninthedynamicTxRUshutdownsolutionisCSIreportenhancementthatis,reportingmultiplesetsofCSIinoneCSIreportandreducingCSIoverhead.

ChannelshutdowncanreducethepowerconsumptionofthePA,andstaticpowerconsumptionoftheradiofrequency(RF)channel.Spatialdomainenergysavingtechnologiesbasedonchannelshutdownhaveobviousadvantagesinensuringservicecontinuity,arenotlimitedtobasestationswithlowserviceload,andareregardedasprevailingsolutionsforspatialdomainenergysaving.

12/25

Large-scaledistributedantennassupportmulti-TRP.Thatis,multipleantennapanelscanberegardedasapartoftheAAUinspatialdomain.Semi-static/dynamicadaptivemulti-TRPadjustmentisaspecialcaseofadaptivetransmissionantennaadjustment.Inactualtransmission,abettertransmissionlink(forexample,closerphysicaldistance)mayexistbetweenaUEandaTRP.AsusingmultipleTRPstotransmitdatafortheUEisnotalwaysnecessary,dynamicallyshuttingdownsomeTRPscansignificantlyreducethenetworkenergyconsumption.EspeciallyinfuturetransmissionsystemsthatdeploydistributedmassiveMIMOarraystosupportshort-rangetransmission,moreTRPsareusedfortransmission.Dynamicmulti-TRPshutdowncanbetterbalanceUEperformanceandnetworkenergyconsumption.

5.2.2EnergySavingTechnologiesinTimeDomain

Inmediumandlowsystemloadscenarios,methodssuchasdynamicandintelligentcellshutdown,intelligentDTX/DRXcoordination,andadaptivereductionofbroadcastsignaltransmissiontimeareusedtoensure

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论