版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_
MachineLearningForAbsoluteBeginners
OliverTheobald
SecondEdition
Copyright©2017byOliverTheobald
Allrightsreserved.Nopartofthispublicationmaybereproduced,distributed,ortransmittedinanyformorbyanymeans,includingphotocopying,recording,orotherelectronicormechanicalmethods,withoutthepriorwrittenpermissionofthepublisher,exceptinthecaseofbriefquotationsembodiedincriticalreviewsandcertainothernon-commercialusespermittedbycopyrightlaw.
Contents
INTRODUCTION
WHATISMACHINELEARNING?MLCATEGORIES
THEMLTOOLBOXDATASCRUBBING
SETTINGUPYOURDATAREGRESSIONANALYSISCLUSTERING
BIAS&VARIANCE
ARTIFICIALNEURALNETWORKSDECISIONTREES
ENSEMBLEMODELINGBUILDINGAMODELINPYTHONMODELOPTIMIZATIONFURTHERRESOURCESDOWNLOADINGDATASETSFINALWORD
INTRODUCTION
MachineshavecomealongwaysincetheIndustrialRevolution.Theycontinuetofillfactoryfloorsandmanufacturingplants,butnowtheircapabilitiesextendbeyondmanualactivitiestocognitivetasksthat,untilrecently,onlyhumanswerecapableofperforming.Judgingsongcompetitions,drivingautomobiles,andmoppingthefloorwithprofessionalchessplayersarethreeexamplesofthespecificcomplextasksmachinesarenowcapableofsimulating.
Buttheirremarkablefeatstriggerfearamongsomeobservers.Partofthisfearnestlesontheneckofsurvivalistinsecurities,whereitprovokesthedeep-seatedquestionofwhatif?Whatifintelligentmachinesturnonusinastruggleofthefittest?Whatifintelligentmachinesproduceoffspringwithcapabilitiesthathumansneverintendedtoimparttomachines?Whatifthelegendofthesingularityistrue?
Theothernotablefearisthethreattojobsecurity,andifyou’reatruckdriveroranaccountant,thereisavalidreasontobeworried.AccordingtotheBritishBroadcastingCompany’s(BBC)interactiveonlineresourceWillarobottakemyjob?,professionssuchasbarworker(77%),waiter(90%),charteredaccountant(95%),receptionist(96%),andtaxidriver(57%)eachhaveahighchanceofbecomingautomatedbytheyear2035.
[1]
Butresearchonplannedjobautomationandcrystalballgazingwithrespecttothefutureevolutionofmachinesandartificialintelligence(AI)shouldbereadwithapinchofskepticism.AItechnologyismovingfast,butbroadadoptionisstillanuncharteredpathfraughtwithknownandunforeseenchallenges.Delaysandotherobstaclesareinevitable.
NorismachinelearningasimplecaseofflickingaswitchandaskingthemachinetopredicttheoutcomeoftheSuperBowlandserveyouadeliciousmartini.Machinelearningisfarfromwhatyouwouldcallanout-of-the-boxsolution.
Machinesoperatebasedonstatisticalalgorithmsmanagedandoverseenbyskilledindividuals—knownasdatascientistsandmachinelearningengineers.Thisisonelabormarketwherejobopportunitiesaredestinedfor
growthbutwhere,currently,supplyisstrugglingtomeetdemand.IndustryexpertslamentthatoneofthebiggestobstaclesdelayingtheprogressofAIistheinadequatesupplyofprofessionalswiththenecessaryexpertiseandtraining.
AccordingtoCharlesGreen,theDirectorofThoughtLeadershipatBelatrixSoftware:
“It’sahugechallengetofinddatascientists,peoplewithmachinelearningexperience,orpeoplewiththeskillstoanalyzeandusethedata,aswellasthosewhocancreatethealgorithmsrequiredformachinelearning.Secondly,whilethetechnologyisstillemerging,therearemanyongoingdevelopments.It’sclearthatAIisalongwayfromhowwemightimagineit.”
[2]
Perhapsyourownpathtobecominganexpertinthefieldofmachinelearningstartshere,ormaybeabaselineunderstandingissufficienttosatisfyyourcuriosityfornow.Inanycase,let’sproceedwiththeassumptionthatyouarereceptivetotheideaoftrainingtobecomeasuccessfuldatascientistormachinelearningengineer.
Tobuildandprogramintelligentmachines,youmustfirstunderstandclassicalstatistics.Algorithmsderivedfromclassicalstatisticscontributethemetaphoricalbloodcellsandoxygenthatpowermachinelearning.Layeruponlayeroflinearregression,k-nearestneighbors,andrandomforestssurgethroughthemachineanddrivetheircognitiveabilities.Classicalstatisticsisattheheartofmachinelearningandmanyofthesealgorithmsarebasedonthesamestatisticalequationsyoustudiedinhighschool.Indeed,statisticalalgorithmswereconductedonpaperwellbeforemachinesevertookonthetitleofartificialintelligence.
Computerprogrammingisanotherindispensablepartofmachinelearning.Thereisn’taclick-and-dragorWeb2.0solutiontoperformadvancedmachinelearninginthewayonecanconvenientlybuildawebsitenowadayswithWordPressorStrikingly.Programmingskillsarethereforevitaltomanagedataanddesignstatisticalmodelsthatrunonmachines.
Somestudentsofmachinelearningwillhaveyearsofprogrammingexperiencebuthaven’ttouchedclassicalstatisticssincehighschool.Others,perhaps,neverevenattemptedstatisticsintheirhighschoolyears.Butnottoworry,manyofthemachinelearningalgorithmswediscussinthisbookhaveworkingimplementationsinyourprogramminglanguageofchoice;noequationwritingnecessary.Youcanusecodetoexecutetheactualnumber
crunchingforyou.
Ifyouhavenotlearnedtocodebefore,youwillneedtoifyouwishtomakefurtherprogressinthisfield.Butforthepurposeofthiscompactstarter’scourse,thecurriculumcanbecompletedwithoutanybackgroundincomputerprogramming.Thisbookfocusesonthehigh-levelfundamentalsofmachinelearningaswellasthemathematicalandstatisticalunderpinningsofdesigningmachinelearningmodels.
Forthosewhodowishtolookattheprogrammingaspectofmachinelearning,Chapter13walksyouthroughtheentireprocessofsettingupasupervisedlearningmodelusingthepopularprogramminglanguagePython.
WHATISMACHINELEARNING?
In1959,IBMpublishedapaperintheIBMJournalofResearchandDevelopmentwithan,atthetime,obscureandcurioustitle.AuthoredbyIBM’sArthurSamuel,thepaperinvestedtheuseofmachinelearninginthegameofcheckers“toverifythefactthatacomputercanbeprogrammedsothatitwilllearntoplayabettergameofcheckersthancanbeplayedbythepersonwhowrotetheprogram.”
[3]
Althoughitwasnotthefirstpublicationtousetheterm“machinelearning”perse,ArthurSamueliswidelyconsideredasthefirstpersontocoinanddefinemachinelearningintheformwenowknowtoday.Samuel’slandmarkjournalsubmission,SomeStudiesinMachineLearningUsingtheGameofCheckers,isalsoanearlyindicationofhomosapiens’determinationtoimpartourownsystemoflearningtoman-mademachines.
Figure1:Historicalmentionsof“machinelearning”inpublishedbooks.Source:GoogleNgramViewer,2017
ArthurSamuelintroducesmachinelearninginhispaperasasubfieldofcomputersciencethatgivescomputerstheabilitytolearnwithoutbeingexplicitlyprogrammed.
[4]
Almostsixdecadeslater,thisdefinitionremainswidelyaccepted.
AlthoughnotdirectlymentionedinArthurSamuel’sdefinition,akeyfeatureofmachinelearningistheconceptofself-learning.Thisreferstotheapplicationofstatisticalmodelingtodetectpatternsandimprove
performancebasedondataandempiricalinformation;allwithoutdirectprogrammingcommands.ThisiswhatArthurSamueldescribedastheabilitytolearnwithoutbeingexplicitlyprogrammed.Buthedoesn’tinferthatmachinesformulatedecisionswithnoupfrontprogramming.Onthecontrary,machinelearningisheavilydependentoncomputerprogramming.Instead,Samuelobservedthatmachinesdon’trequireadirectinputcommandtoperformasettaskbutratherinputdata.
Figure2:ComparisonofInputCommandvsInputData
Anexampleofaninputcommandistyping“2+2”intoaprogramminglanguagesuchasPythonandhitting“Enter.”
>>>2+2
4
>>>
Thisrepresentsadirectcommandwithadirectanswer.
Inputdata,however,isdifferent.Dataisfedtothemachine,analgorithmisselected,hyperparameters(settings)areconfiguredandadjusted,andthemachineisinstructedtoconductitsanalysis.Themachineproceedstodecipherpatternsfoundinthedatathroughtheprocessoftrialanderror.Themachine’sdatamodel,formedfromanalyzingdatapatterns,canthenbeusedtopredictfuturevalues.
Althoughthereisarelationshipbetweentheprogrammerandthemachine,theyoperatealayerapartincomparisontotraditionalcomputerprogramming.Thisisbecausethemachineisformulatingdecisionsbasedonexperienceandmimickingtheprocessofhuman-baseddecision-making.
Asanexample,let’ssaythatafterexaminingtheYouTubeviewinghabitsofdatascientistsyourmachineidentifiesastrongrelationshipbetweendata
scientistsandcatvideos.Later,yourmachineidentifiespatternsamongthephysicaltraitsofbaseballplayersandtheirlikelihoodofwinningtheseason’sMostValuablePlayer(MVP)award.Inthefirstscenario,themachineanalyzedwhatvideosdatascientistsenjoywatchingonYouTubebasedonuserengagement;measuredinlikes,subscribes,andrepeatviewing.Inthesecondscenario,themachineassessedthephysicalfeaturesofpreviousbaseballMVPsamongvariousotherfeaturessuchasageandeducation.However,inneitherofthesetwoscenarioswasyourmachineexplicitlyprogrammedtoproduceadirectoutcome.Youfedtheinputdataandconfiguredthenominatedalgorithms,butthefinalpredictionwasdeterminedbythemachinethroughself-learninganddatamodeling.
Youcanthinkofbuildingadatamodelassimilartotrainingaguidedog.Throughspecializedtraining,guidedogslearnhowtorespondinvarioussituations.Forexample,thedogwilllearntoheelataredlightortosafelyleaditsmasteraroundobstacles.Ifthedoghasbeenproperlytrained,then,eventually,thetrainerwillnolongerberequired;theguidedogwillbeabletoapplyitstraininginvariousunsupervisedsituations.Similarly,machinelearningmodelscanbetrainedtoformdecisionsbasedonpastexperience.
Asimpleexampleiscreatingamodelthatdetectsspamemailmessages.Themodelistrainedtoblockemailswithsuspicioussubjectlinesandbodytextcontainingthreeormoreflaggedkeywords:dearfriend,free,invoice,PayPal,Viagra,casino,payment,bankruptcy,andwinner.Atthisstage,though,wearenotyetperformingmachinelearning.Ifwerecallthevisualrepresentationofinputcommandvsinputdata,wecanseethatthisprocessconsistsofonlytwosteps:Command>Action.
Machinelearningentailsathree-stepprocess:Data>Model>Action.
Thus,toincorporatemachinelearningintoourspamdetectionsystem,weneedtoswitchout“command”for“data”andadd“model”inordertoproduceanaction(output).Inthisexample,thedatacomprisessampleemailsandthemodelconsistsofstatistical-basedrules.Theparametersofthemodelincludethesamekeywordsfromouroriginalnegativelist.Themodelisthentrainedandtestedagainstthedata.
Oncethedataisfedintothemodel,thereisastrongchancethatassumptionscontainedinthemodelwillleadtosomeinaccuratepredictions.Forexample,undertherulesofthismodel,thefollowingemailsubjectlinewouldautomaticallybeclassifiedasspam:“PayPalhasreceivedyourpaymentforCasinoRoyalepurchasedoneBay.”
AsthisisagenuineemailsentfromaPayPalauto-responder,thespamdetectionsystemisluredintoproducingafalsepositivebasedonthenegativelistofkeywordscontainedinthemodel.Traditionalprogrammingishighlysusceptibletosuchcasesbecausethereisnobuilt-inmechanismtotestassumptionsandmodifytherulesofthemodel.Machinelearning,ontheotherhand,canadaptandmodifyassumptionsthroughitsthree-stepprocessandbyreactingtoerrors.
Training&TestData
Inmachinelearning,dataissplitintotrainingdataandtestdata.Thefirstsplitofdata,i.e.theinitialreserveofdatayouusetodevelopyourmodel,providesthetrainingdata.Inthespamemaildetectionexample,falsepositivessimilartothePayPalauto-responsemightbedetectedfromthetrainingdata.Newrulesormodificationsmustthenbeadded,e.g.,emailnotificationsissuedfromthesendingaddress“
payments@
”shouldbeexcludedfromspamfiltering.
Afteryouhavesuccessfullydevelopedamodelbasedonthetrainingdataandaresatisfiedwithitsaccuracy,youcanthentestthemodelontheremainingdata,knownasthetestdata.Onceyouaresatisfiedwiththeresultsofboththetrainingdataandtestdata,themachinelearningmodelisreadytofilterincomingemailsandgeneratedecisionsonhowtocategorizethoseincomingmessages.
Thedifferencebetweenmachinelearningandtraditionalprogrammingmayseemtrivialatfirst,butitwillbecomeclearasyourunthroughfurtherexamplesandwitnessthespecialpowerofself-learninginmorenuancedsituations.
Thesecondimportantpointtotakeawayfromthischapterishowmachinelearningfitsintothebroaderlandscapeofdatascienceandcomputerscience.Thismeansunderstandinghowmachinelearninginterrelateswithparentfieldsandsisterdisciplines.Thisisimportant,asyouwillencountertheserelatedtermswhensearchingforrelevantstudymaterials—andyouwillhearthemmentionedadnauseaminintroductorymachinelearningcourses.Relevantdisciplinescanalsobedifficulttotellapartatfirstglance,suchas“machinelearning”and“datamining.”
Let’sbeginwithahigh-levelintroduction.Machinelearning,datamining,computerprogramming,andmostrelevantfields(excludingclassical
statistics)derivefirstfromcomputerscience,whichencompasseseverythingrelatedtothedesignanduseofcomputers.Withintheall-encompassingspaceofcomputerscienceisthenextbroadfield:datascience.Narrowerthancomputerscience,datasciencecomprisesmethodsandsystemstoextractknowledgeandinsightsfromdatathroughtheuseofcomputers.
Figure3:ThelineageofmachinelearningrepresentedbyarowofRussianmatryoshkadolls
Poppingoutfromcomputerscienceanddatascienceasthethirdmatryoshkadollisartificialintelligence.Artificialintelligence,orAI,encompassestheabilityofmachinestoperformintelligentandcognitivetasks.ComparabletothewaytheIndustrialRevolutiongavebirthtoaneraofmachinesthatcouldsimulatephysicaltasks,AIisdrivingthedevelopmentofmachinescapableofsimulatingcognitiveabilities.
Whilestillbroadbutdramaticallymorehonedthancomputerscienceanddatascience,AIcontainsnumeroussubfieldsthatarepopulartoday.Thesesubfieldsincludesearchandplanning,reasoningandknowledgerepresentation,perception,naturallanguageprocessing(NLP),andofcourse,machinelearning.MachinelearningbleedsintootherfieldsofAI,includingNLPandperceptionthroughtheshareduseofself-learningalgorithms.
Figure4:Visualrepresentationoftherelationshipbetweendata-relatedfields
ForstudentswithaninterestinAI,machinelearningprovidesanexcellentstartingpointinthatitoffersamorenarrowandpracticallensofstudycomparedtotheconceptualambiguityofAI.Algorithmsfoundinmachinelearningcanalsobeappliedacrossotherdisciplines,includingperceptionandnaturallanguageprocessing.Inaddition,aMaster’sdegreeisadequatetodevelopacertainlevelofexpertiseinmachinelearning,butyoumayneedaPhDtomakeanytrueprogressinAI.
Asmentioned,machinelearningalsooverlapswithdatamining—asisterdisciplinethatfocusesondiscoveringandunearthingpatternsinlargedatasets.Popularalgorithms,suchask-meansclustering,associationanalysis,andregressionanalysis,areappliedinbothdataminingandmachinelearningtoanalyzedata.Butwheremachinelearningfocusesontheincrementalprocessofself-learninganddatamodelingtoformpredictionsaboutthefuture,dataminingnarrowsinoncleaninglargedatasetstogleanvaluableinsightfromthepast.
Thedifferencebetweendataminingandmachinelearningcanbeexplainedthroughananalogyoftwoteamsofarchaeologists.Thefirstteamismadeupofarchaeologistswhofocustheireffortsonremovingdebristhatliesinthewayofvaluableitems,hidingthemfromdirectsight.Theirprimarygoalsaretoexcavatethearea,findnewvaluablediscoveries,andthenpackuptheirequipmentandmoveon.Adaylater,theywillflytoanotherexoticdestinationtostartanewprojectwithnorelationshiptothesitethey
excavatedthedaybefore.
Thesecondteamisalsointhebusinessofexcavatinghistoricalsites,butthesearchaeologistsuseadifferentmethodology.Theydeliberatelyreframefromexcavatingthemainpitforseveralweeks.Inthattime,theyvisitotherrelevantarchaeologicalsitesintheareaandexaminehoweachsitewasexcavated.Afterreturningtothesiteoftheirownproject,theyapplythisknowledgetoexcavatesmallerpitssurroundingthemainpit.
Thearchaeologiststhenanalyzetheresults.Afterreflectingontheirexperienceexcavatingonepit,theyoptimizetheireffortstoexcavatethenext.Thisincludespredictingtheamountoftimeittakestoexcavateapit,understandingvarianceandpatternsfoundinthelocalterrainanddevelopingnewstrategiestoreduceerrorandimprovetheaccuracyoftheirwork.Fromthisexperience,theyareabletooptimizetheirapproachtoformastrategicmodeltoexcavatethemainpit.
Ifitisnotalreadyclear,thefirstteamsubscribestodataminingandthesecondteamtomachinelearning.Atamicro-level,bothdataminingandmachinelearningappearsimilar,andtheydousemanyofthesametools.Bothteamsmakealivingexcavatinghistoricalsitestodiscovervaluableitems.Butinpractice,theirmethodologyisdifferent.Themachinelearningteamfocusesondividingtheirdatasetintotrainingdataandtestdatatocreateamodel,andimprovingfuturepredictionsbasedonpreviousexperience.Meanwhile,thedataminingteamconcentratesonexcavatingthetargetareaaseffectivelyaspossible—withouttheuseofaself-learningmodel—beforemovingontothenextcleanupjob.
MLCATEGORIES
Machinelearningincorporatesseveralhundredstatistical-basedalgorithmsandchoosingtherightalgorithmorcombinationofalgorithmsforthejobisaconstantchallengeforanyoneworkinginthisfield.Butbeforeweexaminespecificalgorithms,itisimportanttounderstandthethreeoverarchingcategoriesofmachinelearning.Thesethreecategoriesaresupervised,unsupervised,andreinforcement.
SupervisedLearning
Asthefirstbranchofmachinelearning,supervisedlearningconcentratesonlearningpatternsthroughconnectingtherelationshipbetweenvariablesandknownoutcomesandworkingwithlabeleddatasets.
Supervisedlearningworksbyfeedingthemachinesampledatawithvariousfeatures(representedas“X”)andthecorrectvalueoutputofthedata(representedas“y”).Thefactthattheoutputandfeaturevaluesareknownqualifiesthedatasetas“labeled.”Thealgorithmthendecipherspatternsthatexistinthedataandcreatesamodelthatcanreproducethesameunderlyingruleswithnewdata.
Forinstance,topredictthemarketrateforthepurchaseofausedcar,asupervisedalgorithmcanformulatepredictionsbyanalyzingtherelationshipbetweencarattributes(includingtheyearofmake,carbrand,mileage,etc.)andthesellingpriceofothercarssoldbasedonhistoricaldata.Giventhatthesupervisedalgorithmknowsthefinalpriceofothercardssold,itcanthenworkbackwardtodeterminetherelationshipbetweenthecharacteristicsofthecaranditsvalue.
Figure1:Carvaluepredictionmodel
Afterthemachinedecipherstherulesandpatternsofthedata,itcreateswhatisknownasamodel:analgorithmicequationforproducinganoutcomewithnewdatabasedontherulesderivedfromthetrainingdata.Oncethemodelisprepared,itcanbeappliedtonewdataandtestedforaccuracy.Afterthemodelhaspassedboththetrainingandtestdatastages,itisreadytobeappliedandusedintherealworld.
InChapter13,wewillcreateamodelforpredictinghousevalueswhereyistheactualhousepriceandXarethevariablesthatimpacty,suchaslandsize,location,andthenumberofrooms.Throughsupervisedlearning,wewillcreatearuletopredicty(housevalue)basedonthegivenvaluesofvariousvariables(X).
Examplesofsupervisedlearningalgorithmsincluderegressionanalysis,decisiontrees,k-nearestneighbors,neuralnetworks,andsupportvectormachines.Eachofthesetechniqueswillbeintroducedlaterinthebook.
UnsupervisedLearning
Inthecaseofunsupervisedlearning,notallvariablesanddatapatternsareclassified.Instead,themachinemustuncoverhiddenpatternsandcreatelabelsthroughtheuseofunsupervisedlearningalgorithms.Thek-meansclusteringalgorithmisapopularexampleofunsupervisedlearning.ThissimplealgorithmgroupsdatapointsthatarefoundtopossesssimilarfeaturesasshowninFigure1.
Figure1:Exampleofk-meansclustering,apopularunsupervisedlearningtechnique
IfyougroupdatapointsbasedonthepurchasingbehaviorofSME(SmallandMedium-sizedEnterprises)andlargeenterprisecustomers,forexample,youarelikelytoseetwoclustersemerge.ThisisbecauseSMEsandlargeenterprisestendtohavedisparatebuyinghabits.Whenitcomestopurchasingcloudinfrastructure,forinstance,basiccloudhostingresourcesandaContentDeliveryNetwork(CDN)mayprovesufficientformostSMEcustomers.Largeenterprisecustomers,though,aremorelikelytopurchaseawiderarrayofcloudproductsandentiresolutionsthatincludeadvancedsecurityandnetworkingproductslikeWAF(WebApplicationFirewall),adedicatedprivateconnection,andVPC(VirtualPrivateCloud).Byanalyzingcustomerpurchasinghabits,unsupervisedlearningiscapableofidentifyingthesetwogroupsofcustomerswithoutspecificlabelsthatclassifythecompanyassmall,mediumorlarge.
Theadvantageofunsupervisedlearningisitenablesyoutodiscoverpatternsinthedatathatyouwereunawareexisted—suchasthepresenceoftwomajorcustomertypes.Clusteringtechniquessuchask-meansclusteringcanalsoprovidethespringboardforconductingfurtheranalysisafterdiscretegroupshavebeendiscovered.
Inindustry,unsupervisedlearningisparticularlypowerfulinfrauddetection
—wherethemostdangerousattacksareoftenthoseyettobeclassified.Onereal-worldexampleisDataVisor,whoessentiallybuilttheirbusinessmodelbasedonunsupervisedlearning.
Foundedin2013inCalifornia,DataVisorprotectscustomersfromfraudulent
onlineactivities,includingspam,fakereviews,fakeappinstalls,andfraudulenttransactions.Whereastraditionalfraudprotectionservicesdrawonsupervisedlearningmodelsandruleengines,DataVisorusesunsupervisedlearningwhichenablesthemtodetectunclassifiedcategoriesofattacksintheirearlystages.
Ontheirwebsite,DataVisorexplainsthat"todetectattacks,existingsolutionsrelyonhumanexperiencetocreaterulesorlabeledtrainingdatatotunemodels.Thismeanstheyareunabletodetectnewattacksthathaven’talreadybeenidentifiedbyhumansorlabeledintrainingdata."
[5]
Thismeansthattraditionalsolutionsanalyzethechainofactivityforaparticularattackandthencreaterulestopredictarepeatattack.Underthisscenario,thedependentvariable(y)istheeventofanattackandtheindependentvariables(X)arethecommonpredictorvariablesofanattack.Examplesofindependentvariablescouldbe:
Asuddenlargeorderfromanunknownuser.I.E.establishedcustomersgenerallyspendlessthan$100perorder,butanewuserspends$8,000inoneorderimmediatelyuponregisteringtheiraccount.
Asuddensurgeofuserratings.I.E.AsatypicalauthorandbookselleronA,it’suncommonformyfirstpublishedworktoreceivemorethanonebookreviewwithinthespaceofonetotwodays.Ingeneral,approximately1in200Amazonreadersleaveabookreviewandmostbooksgoweeksormonthswithoutareview.However,Icommonlyseecompetitorsinthiscategory(datascience)attracting20-50reviewsinoneday!(Unsurprisingly,IalsoseeAmazonremovingthesesuspiciousreviewsweeksormonthslater.)
Identicalorsimilaruserreviewsfromdifferentusers.FollowingthesameAmazonanalogy,Ioftenseeuserreviewsofmybookappearonotherbooksseveralmonthslater(sometimeswithareferencetomynameastheauthorstillincludedinthereview!).Again,Amazoneventuallyremovesthesefakereviewsandsuspendstheseaccountsforbreakingtheirtermsofservice.
Suspiciousshippingaddress.I.E.Forsmallbusinessesthatroutinelyshipproductstolocalcustomers,anorderfromadistantlocation(wheretheydon'tadvertisetheirproducts)caninrarecasesbeanindicatoroffraudulentormaliciousactivity.
Standaloneactivitiessuchasasuddenlargeorderoradistantshippingaddressmayprovetoolittleinformationtopredictsophisticated
cybercriminalactivityandmorelikelytoleadtomanyfalsepositives.Butamodelthatmonitorscombinationsofindependentvariables,suchasasuddenlargepurchaseorderfromtheothersideoftheglobeoralandslideofbookreviewsthatreuseexistingcontentwillgenerallyleadtomoreaccuratepredictions.Asupervisedlearning-basedmodelcoulddeconstructandclassifywhatthesecommonindependentvariablesareanddesignadetectionsystemtoidentifyandpreventrepeatoffenses.
Sophisticatedcybercriminals,though,learntoevadeclassification-basedruleenginesbymodifyingtheirtactics.Inaddition,leadinguptoanattack,attackersoftenregisterandoperatesingleormultipleaccountsandincubatetheseaccountswithactivitiesthatmimiclegitimateusers.Theythenutilizetheirestablishedaccounthistorytoevadedetectionsystems,whicharetrigger-heavyagainstrecentlyregisteredaccounts.Supervisedlearning-basedsolutionsstruggletodetectsleepercellsuntiltheactualdamagehasbeenmadeandespeciallywithregardtonewcategoriesofattacks.
DataVisorandotheranti-fraudsolutionprovidersthereforeleverageunsupervisedlearningtoaddressthelimitationsofsupervisedlearningbyanalyzingpatternsacrosshundredsofmillionsofaccountsandidentifyi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xxx特种合金项目可行性研究报告(立项说明)
- 年产xx博古架项目可行性研究报告(可行性分析)
- 关于医疗护理的英文
- 护理儿科营养不良
- 招投标法律培训课件
- 一年级上册数学教案-6.3 10加几、十几加几及相应的减法 -人教版
- 二年级下册小学数学教案 九、收集数 北京版
- 审计个人未来规划
- 科研机构创新感知监测元数据-征求意见稿-编制说明
- 智力障碍教育考试题库单选题100道及答案解析
- 走向2024年的中欧经贸合作发展与挑战
- 医院患者人文关怀管理制度
- 人教版小学三年级道德与法治上册《第四单元 家是最温暖的地方》大单元整体教学设计
- 第9章-行政机关的其他行为
- GB/T 44260-2024虚拟电厂资源配置与评估技术规范
- 口腔科无菌操作课件
- 休克与血流动力学监测课件
- 环保公司风险分析及防范措施
- 中国食物成分表2018年(标准版)第6版
- 中国心力衰竭诊断和治疗指南2024解读
- 浙江省五校联盟2023-2024学年高三下学期3月联考英语试题(解析版)
评论
0/150
提交评论