版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19.3课题学习选择方案
1.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这
两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结
论:①L描述的是无月租费的收费方式;②k描述的是有月租费的收费方式;③当每月的通话时间为500
分钟时,选择有月租费的收费方式省钱.其中正确结论的个数是()
A.0B.1C.2D.3
2.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解
有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1
千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递
物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
3.随着信息技术的快速发展,“互联网”渗透到我们11常生活的各个领域,网上在线学习交流已不再是梦.现
有某教学网站策划了A,B两种上网学习的月收费方式:
收费方式月使用费/元包时上网时间/力超时费(元/加力
A7250.01
Bmn0.01
设每月上网学习时间为x小时,方案A,B的收费金额分别为%,ye.
(1)下图是%与x之间函数关系的图象,请根据图象填空:m=
(2)写出以与x之间的函数关系式;
(3)选择哪种方式上网学习合算,为什么?
第1页共49页
4.某游泳馆普通票价20元/张,暑期为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费:
②银卡售价150元/张,每次凭卡另收10元.
暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一个坐标系中,若三种消费方式对应的函数图象如图,请求出点A,B,C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
第2页共49页
5.某单位准备印刷一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直
接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图
中甲、乙所示.
(1)请你直接写出甲厂的制版费及y甲与x的函数解析式,并求出其证书印刷单价;
(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?
(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?
6.某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A,B两
地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下
表:
每台甲型收割机的租金每台乙型收割机的租金
A地区1800元1600元
B地区1600元1200元
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x
的函数关系式;
(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;
(3)为农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.
第3页共49页
参考答案:
1.D
22x(OVxWl),
2.解:⑴y甲={t/、y乙=16x+3(2)①当OVxWl时,令y甲Vy乙,即22xV16x+3,解
[15x+7(x>l);
得OVxV;;令y『y乙,即22x=16x+3,解得x=;;令y甲>丫乙,即22x>16x+3,解得gvxWL②当
x>l时,令y甲Vy乙,即15x+7V16x+3,解得x>4;令丫甲=丫乙,BP15x+7=16x+3,解得x=4;令
丫甲>丫乙,即15x+7>16x+3,解得1VxV4.综上可知:当5VxV4时,选乙快递公司省钱;当x=4或x
时,选甲、乙两家快递公司快递费一样多;当0<xV;或x>4时,选甲快递公司省钱
3.(1)1050
[7(0WxW25)
⑵y,\—1
[0.6x-8(x>25)
⑶当xW50时,yB=10;当x>50时,yt)=O.6x—20.当0<xW25时,y*=7,yB=10,yA<yB>.,.选择A
方式上网学习合算;当25Vx<50时,令yA=yB,即0.6x-8=10,解得x=30,...当25Vx<30时,yA
<YB,选择A方式上网学习合算,当x=30时,y*=yB,选择A或B方式上网学习都行,当30<xW50,y,(
>yn,选择B方式上网学习合算;当x>50时,,.,%=().6x—8,yn=0.6x—20,,yA>yn,选择B方式上
网学习合算,综上所述:当0<x<30时,yA<yB,选择A方式上网学习合算;当x=30时,y,、=yB,选择A
或B方式上网学习都行;当x>30时,yA>yB,选择B方式上网学习合算
4.解:(1)银卡:y=10x+150;普通票:y=20x
y=20x,[x—15,
⑵把x=0代入y=10x+150,得y=150,,A(0,150);由题意知解得;.B(15,
(y=10x+150,[y=300,
300);把y=600代入y=10x+150,得x=45,...C(45,600)(3)当0<xV15时,选择购买普通票更合
算;当x=15时,选择购买银卡、普通票的总费用相同,均比金卡合算;当15<xV45时,选择购买银卡
更合算;当x=45时,选择购买金卡、银卡的总费用相同,均比普通票合算;当x>45时,选择购买金卡
更合算
5.解:(1)制版费1千元,y^=0.5x+l,证书印刷单价0.5元
(2)把x=6代入y巾=0.5x+l中得y=4,当x22时,由图象可设y乙与x的函数关系式为y^=kx+b,
2k+b=3,fk=O.25,
由已知得解得则yz=0.25x+2.5,当x=8时,y甲=0.5X8+1=5,yz=O.25X
、6k+b=4,[b=2.5,
8+2.5=4.5,5—4.5=0.5(千元),即当印制8千张证书时,选择乙厂,节省费用500元(3)设甲厂每
个证书的印刷费用降低a元,则8000a》500,解得a>0.0625,则甲厂每个证书印刷费用最少降低0.0625
元
6.解;(1)由于派往A地乙型收割机x台,则派往B地乙型收割机为(30—x)台,派往A,B地区的甲型收
割机分别为(30—x)台和(x-10)台,/.y=1600x+1200(30-x)+1800(30-x)+1600(x-10)=200x+
74000(10WxW30且x为整数)(2)由题意得200x+74000279600,解得x228,;28WxW30,x是正整
数,;.x=28,29,30,...有3种不同分派方案:①当x=28时,派往A地区的甲型收割机2台,乙型收
割机28台,余者全部派往B地区;②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余
者全部派往B地区;③当x=30时,即30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地
区(3);y=200x+74000中y随x的增大而增大,...当x=30时,y取得最大值,此时,y=200X30+
74000=80000,建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,
这样公司每天获得租金最高,最高租金为80000元
第4页共49页
第十九章一次函数
19.1函数
19.1.1变量与函数
1.下列说法中,不正确的是()
A.函数不是数,而是一种关系B.多边形的内角和是边数的函数
C.一天中时间是温度的函数D.一天中温度是时间的函数
2.下列各表达式不是表示y是x的函数的是(])
A.y=3/B.>=一
—(xNO)D.y=E
3.指出下列事件过程中的常量与变量
(1)某水果店橘子的单价为5元/千克,买a千橘子的总价为m元,其中常量是,变量
是;
(2)周长。与圆的半径r之间的关系式是C=2nr,其中常量是,变量是
士TTR"
4.若球体体积为V,半径为R,则片3其中变量是、,常量
是.
5.计划购买50元的乒乓球,所能购买的总数〃(个)与单价a(元)的关系式是,其中
变量是,常量是
6.汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)
的关系是,其中的常量是,变量是.
7.表格列出了一项实验的统计数据,表示小球从高度x(单位:m)落下时弹跳高度y(单位:m)与下落
高的关系,据表可以写出的一个关系式是.
X5080100150
y25405075
8.下列关于变量x,7的关系式:y=2^+3;y=x+3;y=21%/;=±sfx;⑤/-3产10,其
中表示y是x的函数关系的是.
9.设路程为s,时间为t,速度为「,当尸60时,路程和时间的关系式为,这个关系式中,
是常量,是变量,是的函数.
10.油箱中有油30kg,油从管道中匀速流出,lh流完,则油箱中剩余油量Q(kg)与流出时间t(min)之
间的函数关系式是,自变量t的取值范围是.
11.下列问题中,一个变量是否是另一个变量的函数?如果是,请指出自变量.
(1)改变正方形的边长x,正方形的面积S随之变化;
2
(2)秀水村的耕地面积是10"这个村人均占有耕地面积7(单位:m)随这个村人数n的变化而变
化;
(3)一是数轴上的一个动点,它到原点的距离记为x,它对应的实数为y,y随x的变化而变化.
4x—2
12.已知函数
第5页共49页
(1)求当产2,3,-3时,函数的值;
(2)求当x取什么值时,函数的值为0.
13.汽车的油箱中有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)
的增加而减少,平均耗油量为0.IL/km.
(1)写出表示y与x的函数关系的式子.
(2)指出自变量x的取值范围;
(3)汽车行驶200km时,油箱中还有多少油?
参考答案:
1.C
2.C
3.(1)5a,m(2)2,nC,r
4.VR
5.a,n50
6.Q=40-5t40,5Q,t
7.5x
8.n=—vr
a3
9.s=60ti601和sst
io.Q=3O-L0<r<60
11.解:(1)S是x的函数,其中x是自变量.
(2)y是"的函数,其中〃是自变量.
(3)y不是x的函数.4x-
12.解:(1)当下2时,尸卷一二2;
当下3时,y=1;
第6页共49页
当A=-3时,产7.।
(2)令.=0,解得尸]
即当"*时,尸0.
13.解:⑴函数关系式为:y-50—0.lx
(2)由xNO及50—0.lx20得0WxW500
,自变量的取值范围是0WxW500
⑶当x=200时,函数y的值为片50—0.1X200=30.
因此,当汽车行驶200km时,油箱中还有油30L.
第7页共49页
19.1.2函数的图象(1)
函数的图象
一、选择题
1.图中,表小y是x的函数图象是()
ABCD
2.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()
3.如图,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小
时爬上山顶,游客爬山所用时间t(小时)与山高人(千米)间的函数关系用图象表示是()
ABD
4.你一定知道“乌鸦喝水”的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,
于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水,但是还没解渴,
瓶中水面下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,
哇哇地叫着飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情
节的图象是()
二、填空题
5.星期日晚饭后,小红从家里出去散步,如图所示,描述了她散步过程中离家的距离s(m)与散步
所用的时间t(min)之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了
一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题
第8页共49页
(1)公共阅报栏离小红家有米,小红从家走到公共阅报栏用了分;
(2)小红在公共阅报栏看新闻一共用了一分;
(3)邮亭离公共阅报栏有米,小红从公共阅报栏到邮亭用了分;
(4)小红从邮亭走回家用了分,平均速度是米/秒.
三、解答题
6.如图,下面的图象记录了某地一月份的温度随时间变化的情况,请你仔细观察图象回答下面的问题:
温度一
CC)
3一厂厂厂厂厂L]-「LLL1
2-rrrrrr>T\rlt-r-1
:一厂F厂厂厂l/r\r-r-r-1
2Iar^o
..-..................2224时间(时;
厂
厂rr
41厂Lr->K^r-1
厂
-厂rL
厂-LLr--
厂r
i?厂r
zK厂t-I—r-1
匚
匚r
TLr-i-1
一
一
」
一J_>_______J
(1)在这个问题中,变量分别是,时间的取值范围是;
(2)20时的温度是℃,温度是0℃的时刻是时,最暖和的时刻是时,温度在一
3℃以下的持续时间为小时;
(3)你从图象中还能获得哪些信息?(写出1〜2条即可)
答:•
7.大家知道,函数图象特征与函数性质之间存在着必然联系.请根据图中的函数图象
特征及表中的提示,说出此函数的变化规律.此外,你还能说出此函数的哪些性质?
序号函数图象特征函数变化规律
第9页共49页
(1)曲线从点A(-6,-4)至点K(7,2)自变量的取值范围是_____.
(2)曲线与y轴交于点D(0,4)当x=_____时,y=_____.
曲线与X轴分别交于点B(—5,0)、F
(3)当x的值分别为时,y=0.
(2,0)、H(6,0)
(4)曲线经过点E(1,2)当x=__时,y=一
(5)由左至右曲线AC呈上升状态当一6WxW—2时,y随x的增大而.
(6)由左至右曲线CG呈下降状态当______时,y随x的增大而___________.
(7)由左至右曲线GK呈一当时y随
当x=_____时,y有______值,且这个值为
(8)曲线上的最高点是C(-2,5)
当x=_____时,y有______值,且这个值为
(9)曲线上的最低点是____________
(10)曲线BCF位于x轴的上方当______时,y_____0.
8.(广州育才中学模拟)甲车速度为20米/秒,乙车速度为25米/秒。现甲车在乙车前面500米,设
x秒后两车之间的距离为y米。求y随x(OWxWlOO)变化的函数解析式,并画出函数图象。
9.(南京师大附中月考)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途
中相遇后停留一段时间,然后分别按原速一同驶往甲地后停车。设慢车行驶的时间为x小时,两车之间的
距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:
(1)甲、乙两地之间的距离为千米;
(2)求快车和慢车的速度。
10.某校办工厂现在的年产值是15万元,计划从今年开始,以后每年的年产值增加2万元.
(1)写出年产值y(万元)与所经过的年数x(年)(x为整数)之间的函数关系式;
(2)画出函数图象;
(3)求10年后的年产值.
11.(南京模拟)看图说故事.
第10页共49页
请你编写一个故事,使故事情境中出现的一对变量X、y满足图所示的函数关系,要求:
(D指出变量x和y的含义;
(2)利用图中的数据说明这对变量变化过程的实际意义,其中需涉及“速度”这个量.
12.(长春模拟)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:
情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;
情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.
(1)情境a,b所对应的函数图象分别是—,—(填写序号);
(2)请你为剩下的函数图象写出一个适合的情境
第11页共49页
参考答案
1.C.2.B.3.D,4,B5.(1)300,4;(2)6;(3)200,3;(4)5.
6.(1)时间、温度,0MY24;
(2)-1,12和18,14,8;
(3)12时-18时之间,温度都高于0℃;答案不唯一。
7.(1)-6<X<1(2)0,4(3)-5,2,6(4)1,2(5)增大(6)
一2WW4,减小(7)上升状态,4WE7,x的增大而增大(8)-2,最大,5(9)(-6,
-4),-6,最小,~4
(10)-5<x<2,>
8.解:由题意可知,x秒后两车行驶路程分别是:
甲车为20x米,乙车为25x米
两车行驶路程为25x-20x=5x(米),
两车之间距离为(500-5x)米,
所以y随x变化的函数解析式为y=500-5x,OWxWlOO.
列表:
X・・・10203040
・・・
y450400350300
X50607080•・・
…
y250200150100
9.分析:(1)甲、乙两地之间的距离为未出发时两车之间的距离;(2)抓住两点:①是相同而行,所
行路程和=所行时间X速度和;②是快车行完全程用了8-1=7(小时).
解:(1)根据x,y的实际意义以及图像可知,甲、乙两地之间的距离是560千米.
(2)由图象可知,两车4小时相遇,相遇后停留了1小时,然后快车行驶3小时到达价低(点D表
示快车到达甲地的时刻,此时慢车仍在返回的途中行驶).
第12页共49页
.,•快车的速度=560+7=80(千米/时),
慢车的速度=(560-80X4)4-4=60(千米/时).
点拨:与行程有关的图象信息题中如果要求速度,一定要从图中读到一定的时间内路程的变化,用路
程的变化除以时间的变化即为速度.相遇、追及问题中路程、速度、时间之间的关系要注意.
10.解:(1)函数关系式为y=15+2x(x20且x为整数).
(2)列表如下:
X()123456
y=15+2x15171921232527
函数图象如图.
27-・
24-*
21••
⑻.*
15-
12-
9-
6-
3・
---1r
O1234567X
(3)当x=10时,y=15+2X10=35.
答:10年后的年产值是35万元.
11.解:本题答案不唯一,下列解法供参考.
(1)该函数图象表示小明骑车离出发地的距离y(单位:km)与他所用的时间x(单位:min)的关系.
(2)小明以0.4km/min的速度匀速骑了5min,原地休息了6min后,以0.5km/min的速度匀速骑车
回出发地.
12.解:⑴⑶(1)
(2)情境是小芳离开家不久,休息了一会儿,又返回了家.
第13页共49页
19.1.2函数的图象(2)
一、选择题
1.(易错题)一根弹簧原长12cm,它所挂物体的质量不超过10kg,并且每挂重物1kg就伸长1.5cm,
挂重物后弹簧长度y(cm)与挂重物x(kg)之间的函数关系式是()
A.y=l.5(x+12)(OWxWlO)
B.y=l.5x+12(OWxWlO)
C.y=1.5x+10(xNO)
D.y=l.5(x-12)(OWxWlO)
2.(易错题)如图,把一个小球垂直向上抛出,则下列描述该小球的运动速度v(单位:m/s)与运动
时间t(单位:s)关系的函数图象中,正确的是()
由
3.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地。
下列函数图象能表达这一过程的是()
第14页共49页
4.(教材习题变式)图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家。如果菜地
到玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()
A.1.1,8B.0.9,3C.1.1,12D.0.9,8
•W千米
013253755goa分*
5.如图1,将水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,
(1)请分别找出图2中与各容器对应的水面的高度h和时间t的函数图象,用线段连接起来;
(2)当容器中的水面高度恰好达到容器一半高度时,请在图2的t轴上标出此时t值对应点T的位
置。
6.正方形的边长a与周长/之间存在函数解析式/=4a,其图象是下图中的()
7.(成都实验中学质量检测)百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定
的利润,其数量x(米)与售价y(元)如下表:
第15页共49页
数量X(米)1234
售价y(元)8+0.316+0.624+0.932+1.2
下列用数量X(米)表示售价y(元)的关系式中,正确的是()
A.y=8x+0.3B.y=(8+0.3)xC.y=8+0.3xD.y=8+0.3+x
8.(河南商丘一中期末)如图(1),在矩形MNPQ中,动点R从点N出发,沿N-PfQfM方向运动至
点M处停止。设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图(2)所示,则当
x=9时,点R应运动到()
A.N处B.P处C.Q处I).M处
9.图中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵儿后,又去早餐店吃早餐,然后
散步走回家.其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是
()
A.体育场离张强家2.5千米
B.张强在体育场锻炼了15分钟
C.体育场离早餐店4千米
1Q
I).张强从早餐店回家的平均速度是三千米/时
二、填空题
10.某水果批发市场香蕉的价格如下表:
购买香蕉数(千克)不超过20千克20千克以上但不超过40千克40千克以上
每千克价格(元)654
第16页共49页
若小强购买香蕉X千克(x大于40千克)付了y元,则y关于x的函数解析式为.
11.(哈尔滨十七中月考)图中所反映的过程是:小强从家跑步去体育场,在那里锻炼了一阵后,又
去早餐店吃早餐,然后散步走回家,其中x表示小强离家的时间,y表示小强离家的距离,有以下四个说
法:
①体育场离小强家2.5千米;
②小强在体育场锻炼了15分钟;
③体育场离早餐店4千米:
④小强从早餐店回家的平均速度是3千米/小时。
根据图象提供的信息,其中正确的说法为.(只需填正确的序号)
12.(应用题)骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,如图是骆驼48小时内体温
随时间变化的函数图象,观察函数图象解答下列问题:
(1)第一天中,骆驼体温的变化范围是——℃,它的体温从最低到最高经过了一小时.
(2)从16时到24时,骆驼的体温下降了—七,这两天中,在时间段内骆驼的体温在上
升,在________时间段内骆驼的体温在下降.
(3)A点表示的意义是.,与点A表示温度相同的时间是.
三、解答题
13.用描点法画出函数y=-2x+l的图象。
14.一慢车和一快车沿相同路线从A地到B地,所行驶的路程与时间的函数图象如图所示,试根据图
象回答下列问题:
第17页共49页
(1)由图象你可以得到哪些信息?
(2)求慢车、快车的速度。
(3)求A、B两地之间的距离。
第18页共49页
参考答案
1.B解析:挂挂重物为xkg,则弹簧伸长1.5xcm,挂重物后弹簧长度y(cm)与挂重物工(kg)之
间的函数关系式是y=L5x+12(OWxWlO).故选B.
2.C解析由抛球的清净知,小球上升、下降过程中受重力影响,小球的速度在上升过程中越来越慢,
而在下降过程中越来越快.只有C符合要求,故选C.
3.C解析从出发地到休息地,小刚以400米/分的速度匀速骑车5分,路程为2000米=2千米,四选
项均符合;第二段,休息时间为6分钟,速度为0,A、B选项中第二段函数图象均不符合;从休息地返回
出发地,回到出发地时离出发地的距离为0,D选项中第三段函数图象不符合,故选C.
4.D解析此函数图象大致可分以下几个阶段:
①0〜15分钟,小强从家走到菜地;
②15〜25分钟,小强在菜地浇水;
③25〜37分钟,小强从菜地走到玉米地;
④37〜55分钟,小强在玉米地除草;
⑤55〜80分钟,小强从玉米地回到家.
综合上面的分析得:由③的过程知,a=2-l.1=0.9;
由②④的过程知b=(55-37)-(25-15)=8.
5.解:(1)对应关系连接如图所示:
(2)当容器中的水面高度恰好达到容器一般高度时,函数图象上T的位置如图.
6.C解析本题考查函数解析式与图象之间的相互转化,应考虑自变量的取值范围,答案为C,易忽
略自变量的取值范围而错选A.
7.B解析根据表格中售价与数量之间的关系可得丫=(8+0.3)X,故选B.
8.C解析当R在NP上运动时,△MNR的面积越来越大;在PQ上运动时,△MNR的面积不变;在QM上运
动时,AMNI?的面积越来越小,直到零.因此Q处是△MNR的面积开始减小的点,故选C.
9.C解析:A.由函数图象可知,体育场离张强家2.5千米,故此说法正确;B.由图象可得出张强在
体育场锻炼30-15=15(分),故此说法正确;C.体育场离张强家2.5千米,体育场离早餐店2.57.5=1
第19页共49页
(千米),故此说法错误;D...•张强从早餐店回家所用时间为100-65=35(分),距离为1.5千米,张强
从早餐店回家的平均速度为15-史=竺(千米/时),故此说法正确.
607
10.y=4x(x>40)解析由价格表知,当购买香蕉大于40千克时,每千克4元.
11.①②④解析由函数图象可知,体育场离小强家2.5千米,故①正确;由图象可得出小强在体育
场锻炼30-15=15(分钟),故②正确1体育场离小强家2.5千米,体育场离早餐店2.5-1.5=1(千米),故③
错误::小强从早餐店回家所用时间为95-65=30(分钟).距离为1.5千米,.•.小强从早餐店回家的平均速
度为1.5+亚=3(千米/时).故④正确.
60
12.(1)354012
(2)34时〜16时和28时〜40时0时〜4时,16时〜28时和40时〜48时
(3)12时骆驼的体温为39℃20时、36时、44时
13.解:列表:
X・・・-3-2-10123・・・
y=-2x+l・・・7531-1-3-5・・・
描点、连线,所有函数的图象如图所示.
(答案不唯一)
(2)慢车:—=46(km/h),快车:—=69(km/h).
44
(3)46X18=828(km).所以A、B两地相距828km
第20页共49页
19.2一次函数
19.2.1正比例函数(1)
1.下列问题中,是正比例函数的是()
A.矩形面积固定,长和宽的关系
B.正方形面积和边长之间的关系
C.三角形的面积一定,底边和底边上的高之间的关系
D.匀速运动中,速度固定时,路程和时间的关系
2.若函数丫=(m-2)x+(2m+6)是正比例函数,则m的值为,此时正比例函数的表达式为.
3.三角形的底边长为6,该底上的高为x,则三角形的面积$与*之间的函数关系式为.
4.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x
(kPa)成正比例函数关系.当x=36kPa时,y=108g/m3,请写出y与x的函数关系式.
5.若y=(m-1)x"+nT是y关于x的正比例函数,求m、n的值.
113x
6.在函数①y=-x;②y=2x-3;③丫=-----;④y=2x‘;⑤y=3(2-x);@y=一中,正比例函数有
32+x71
.(只填序号)
n,28
7.若函数y=2x-+m-3是正比例函数,则常数m的值为.
8.已知y与x成正比例,且x=2时,y=6,则函数关系式为当x=4时,y=.
9.已知y与x+3成正比例,且当x=2时,y=-5.
(1)求y与x之间的函数关系式;
(2)当x=3时,求y的值:
第21页共49页
(3)当y=g时,求x的值.
10.AABC的底边BC=8cm,当BC边上的高从小到大改变时,^ABC的面积也随之变化.
(1)写出aABC的面积y(cm2)与BC边上高x(cm)的函数解析式,并指明它是什么函数;
⑵列表格表示当x由5cm变到15cm时(每次增加1cm),y的相应值;
(3)观察表格,请回答:当x每增加1cm时,面积y如何变化?
第22页共49页
参考答案
l.D2.-3y=-5x3.S=3x4.y=3x
5.由题意得,m-lWO,nT=0,.*.ni=-l,n=l,
6.①©7.38.y=3x12
9.(1)设y与x+3的函数关系式为y=k(x+3),贝卜
5=k・(2+3),解得k=-l,
所以y与x之间的函数关系式为y=-x-3.
(2)把x=3代入y=-x-3中,得y=-6.
211
(3)把丫=一代入y=-x-3中,得*=--.
33
10.(l)y=—BC•x=-X8Xx=4x,故它是正比例函数.
22
(2)列表格略.
(3)由(2)可知,当x每增加1cm时,面积y增加4cm2.
第23页共49页
19.2.1正比例函数(2)
一、选择题
1.已知函数y=(k-1):/为正比例函数,则()
A.kW±lB.k=±l
C.k=-lD.k=l
2.若y=x+2-b是正比例函数,则b的值是()
A.0B.-2C.2D.-0.5
3.(易错题)正比例函数kx的大致图像是()
ABCD
4.Pi(x],yi),P2(x2,y2)是正比例函数y二-图像上的两点,下列判断中,正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于云计算的在线教育平台研发与运营合同(04版)
- 2024二手房转让过程中涉及的户口迁移协议3篇
- 《大学英汉翻译》课件
- 浙大校长培训收获感悟
- 移动话术培训
- 2024年度二手私人别墅买卖合同2篇
- 医疗设备采购与维护合同(04版)
- 月子内婴儿的护理措施
- 《红旗谷个案研究》课件
- 购买商品房合同
- 9加几说课课件
- (完整版)二年级乘除法竖式计算
- -精神病医院设置基本标准
- 起名常用字(分五行、笔画及宜忌解释)
- A01083《纳税人(扣缴义务人)基础信息报告表》
- 元旦、春节前我市建筑领域农民工工资支付工作通知
- 敏捷开发测试规范V01
- 最新国家开放大学电大《MySQL数据库应用》网络核心课实验训练2及4答案
- 店店长交接表---7天连锁酒店
- 消防报警主机操作步骤
- 广东省高级人民法院民一庭关于建设工程施工合同纠纷案件若干问题的意见
评论
0/150
提交评论