专题5:机械能知识点(教师版)_第1页
专题5:机械能知识点(教师版)_第2页
专题5:机械能知识点(教师版)_第3页
专题5:机械能知识点(教师版)_第4页
专题5:机械能知识点(教师版)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-PAGE1-第五章机械能一、功和功率1.功功是力的空间积累效应。它和位移相对应(也和时间相对应)。计算功有以下方法:⑴按照定义求功。即:W=Flcosθ。在高中阶段,这种方法只适用于恒力做功。当时F做正功,当时F不做功,当时F做负功。这种方法也可以表述为:功等于恒力和沿该恒力方向上的位移的乘积。⑵用动能定理W=ΔEk或功能关系求功。当F为变力时,高中阶段只能用这种方法求功。这里求得的功是该过程中外力对物体做的总功(或者说是合外力对物体做的功)。⑶利用F-s图象或p-V图象曲线下的面积求功。⑷利用W=Pt计算。θmLF例1.如图所示,质量为m的小球用长L的细线悬挂而静止在竖直位置。在下列三种情况下,分别用水平拉力F将小球拉到细线与竖直方向成θ角的位置。在此过程中,拉力F做的功各是多少?⑴用F缓慢地拉;⑵F为恒力;⑶θmLFA.B.C.D.解:⑴若用F缓慢地拉,则显然F为变力,只能用动能定理求解。F做的功等于该过程克服重力做的功。选D⑵若F为恒力,则可以直接按定义求功。选B⑶若F为恒力,而且拉到该位置时小球的速度刚好为零,那么按定义直接求功和按动能定理求功都是正确的。选B、D。在第三种情况下,由=,可以得到,可见在摆角为θ/2时小球的速度最大。实际上,因为F与mg的合力也是恒力,而绳的拉力始终不做功,所以其效果相当于一个摆,可以把这样的装置叫做“歪摆”。*一对作用力和反作用力做功的特点一对作用力和反作用力总是大小相等方向相反的。但在同一个过程中,它们所作用的物体的位移可能是相等的,也可能是不等的。因此:⑴一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零。⑵特殊地,一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。2.功率功率是描述做功快慢的物理量。⑴功率的定义式:,所求出的功率是时间t内的平均功率。⑵功率的计算式:P=Fvcosθ,其中θ是力与速度间的夹角。该公式有两种用法:①求某一时刻的瞬时功率。这时F为该时刻的作用力大小,v为瞬时速度,对应的P为F在该时刻的瞬时功率;②当v为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F必须为恒力,对应的P为F在该段时间内的平均功率。⑶重力的功率可表示为PG=mgvy,不论物体做什么运动,也不论物体是否受其它力作用,重力的瞬时功率总等于重力和物体在该时刻的竖直分速度的乘积。vafF⑷汽车的两种加速问题。当汽车从静止开始沿水平面加速运动时,有两种不同的加速过程,无论哪种,分析时使用的基本公式都是P=FvvafF①恒定功率的加速。由公式P=Fv和F-f=ma知,由于P恒定,随着v的增大,F必将减小,a也必将减小,汽车做加速度不断减小的加速运动,直到F=f,a=0,这时v达到最大值。可见恒定功率的加速一定不是匀加速。这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力)。vtOvmvm´t0①②②恒定牵引力的加速。由公式P=Fv和F-f=ma知,由于F恒定,所以a恒定,汽车做匀加速运动,而随着v的增大,P也将不断增大,直到P达到额定功率Pm,功率不能再增大了。这时匀加速运动结束,其最大速度为vtOvmvm´t0①②两种加速运动过程的v-t图象如右。要注意两种情况下的最大速度的区别;第二种情况达到额定功率前(0~t0)的平均功率是额定功率的一半。例2.质量为2t的农用汽车,发动机额定功率为30kW,汽车在水平路面行驶时能达到的最大时速为54km/h。若汽车以额定功率从静止开始加速,当其速度达到v=36km/h时的瞬时加速度是多大?解:汽车在水平路面行驶达到最大速度时牵引力F等于阻力f,即Pm=fvm,而速度为v时的牵引力F=Pm/v,再利用F-f=ma,可以求得这时的a=0.50m/s2。v0α例3.v0αA.汽车的速率仍保持是v0B.牵引力大小未变,但汽车受的合外力沿斜面向下,做匀减速运动C.汽车在该坡上减速行驶一定距离后会达到一个稳定速度,其大小为v0/2D.汽车开始做匀减速运动直到速度减小为零解:汽车上坡瞬间速率未变,牵引力大小也未变,但在沿斜面方向除了牵引力和阻力外,增加了一个沿斜面向下的重力的下滑分力Gsinα(由已知得该分力大小和阻力大小相等),因此合力沿斜面向下,开始做减速运动;由P=Fv知,发动机功率不变,速度减小,牵引力F逐渐增大;由Gsinα+f-F=ma,加速度将逐渐减小到零。这时牵引力增加到原来的2倍,因此速率减小为v0/2,以后将保持匀速运动。答案选C。二、动能定理1.动能定理的表述合力所做的功等于物体动能的变化。(这里的合力指物体受到的所有外力的合力,包括重力)。表达式为W=ΔEk(必须是末动能减初动能)动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。实际应用时,后一种表述比较好操作。特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功按代数和加起来,就可以得到总功。动能定理建立起过程量(功)和状态量(动能)间的联系。这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。动能定理表达的是力的空间积累效应(牛顿第二定律表达的是力的瞬时效应)。2.应用动能定理解题的步骤⑴确定研究对象和研究过程。动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。(系统内所有内力做的总功可能不为零)。hH⑶hH例4.质量为m的小球从沙坑上方高H处自由下落,停止运动时陷入沙坑深度为h。则在陷入沙坑过程中,求:沙对小球的平均阻力大小。解:从动能定理的角度分析,自由下落过程重力做功等于动能增加,即末动能Ek;陷入沙坑过程合外力做功使动能减小Ek,即mgH=(F-mg)h。如果注意到全过程的始、末状态动能为零,取全过程用动能定理,则直接可得到:mg(H+h)=Fh。可以看出以上各种解法的结论都是一样的,其中全过程用动能定理解是最简洁的。AOBD例5.如图所示,DO是水平面,AB是斜面。初速为v0的物体从D点出发沿DBA滑动到顶点A速度刚好为零。如果斜面改为AC(C点在OD之间,图中未画出。已知物体与斜面和水平面之间的动摩擦因数处处相同且不为零),让物体从D点出发沿DCAAOBDA.一定等于v0B.一定大于v0C.一定小于v0D.决定于斜面的倾角大小解:不妨假设物体经过的水平面长为l1,斜面长为l2,斜面倾角为θ,动摩擦因数为μ。则物体由D到A克服摩擦阻力做的功W=μmgl1+μmgl2cosθ=μmg(l1+l2cosθ),不难发现括号内两项之和就是OD的长度。因此物体由D到A克服摩擦阻力做的功跟转折点(B或C)的位置无关。对物体从D到A的全过程用动能定理,两次克服重力做的功和克服摩擦阻力做的功都是相同的,因此两次的动能变化也相同。本题选A。vv02v0Ot02t03t04t05t0t例6.质量相等的A、B两物体放在同一水平面上,分别受到水平拉力F1、F2的作用而从静止开始做匀加速运动。经过时间t0和4t0速度分别达到2v0和v0时,撤去F1和vv02v0Ot02t03t04t05t0t解:撤去拉力后两物体的速度图线平行,可知两个物体受到的摩擦力大小相等。每个物体运动的全过程始、末速度都是零,由动能定理,对每个物体都有拉力做的功等于克服摩擦力做的功,只要比较全过程物体的位移大小即可。分别以两个物体为对象,在它们各自运动的全过程用动能定理,WF=Wf=fs,位移由速度图线下的面积求出:s1∶s2=6∶5,所以W1∶W2=6∶5。练习1.如图所示,斜面倾角为α,长为L,AB段光滑,BC段粗糙,且BC=2AB。质量为m的木块从斜面顶端无初速下滑,到达C端时速度刚好减小到零。求物体和斜面BC段间的动摩擦因数μ。αCBA解:以木块为对象,在下滑全过程中用动能定理:重力做的功为mgLsinααCBAmgLsinα=0,从本例题可以看出,由于用动能定理列方程时不牵扯过程中不同阶段的加速度,所以比用牛顿定律和运动学方程解题简洁得多。vv/fGGf练习2.vv/fGGf和,可得H=v02/2g,再以小球为对象,在有空气阻力的情况下对上升和下落的全过程用动能定理。全过程重力做的功为零,所以有:,解得从本题可以看出:根据题意灵活地选取研究过程可以使问题变得简单。有时取全过程简单;有时则取某一阶段简单。原则是尽量使做功的力减少,各个力的功计算方便;或使初、末动能等于零。Lhs练习3.(选做)质量为M的木块放在水平台面上,台面比水平地面高出h=0.20m,木块离台的右端L=1.7m。质量为m=0.10M的子弹以v0=180m/s的速度水平射向木块,并以v=90m/s的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s=1.6m,求木块与台面间的动摩擦因数为Lhs解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段。所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v1,mv0=mv+Mv1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v2,有:……②木块离开台面后的平抛阶段,……③由①、②、③可得μ=0.50从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理。从本题还应引起注意的是:不要对系统用动能定理。在子弹穿过木块阶段,子弹和木块间的一对摩擦力做的总功为负功。如果对系统在全过程用动能定理,就会把这个负功漏掉。ABCDGGNN练习4.如图所示,小球以大小为v0的初速度由A端向右运动,到B端时的速度减小为vB;若以同样大小的初速度由B端向左运动,到A端时的速度减小为vA。已知小球运动过程中始终未离开该粗糙轨道。比较ABCDGGNNvA>vBvA=vBvA<vB三、机械能守恒定律物体系统具有的动能、重力势能和弹性势能的总和叫做物体系统的机械能。1.机械能守恒定律的两种表述⑴在只有重力(或弹簧弹力)做功的情形下,物体的动能和势能发生相互转化,但机械能的总量保持不变。⑵如果系统内没有其它能量参与转化,只发生动能和势能的相互转化时,系统机械能的总量保持不变。对机械能守恒定律的理解:①机械能守恒定律的研究对象一定是系统,至少包括地球在内。既然系统一定含地球,在表述中一般就不再提地球,而是习惯地说成“某物体机械能守恒”了。②当研究对象只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象由多个物体组成时,只要判定系统内没有其它能参与转化,就能判定机械能守恒。③“只有重力做功”不等于“只受重力作用”。2.机械能守恒定律的各种表达形式⑴,即Ep+Ek=Ep´+Ek´;⑵ΔEp+ΔEk=0;ΔE1+ΔE2=0;∑E增=∑E减用⑴,需要规定重力势能的参考平面。用⑵,则不必规定重力势能的参考平面(重力势能的改变量与参考平面的选取没有关系)。尤其是用∑E增=∑E减,只要把增加的机械能和减少的机械能分别列在等号左右,方程就列出来了。3.解题步骤⑴确定研究对象和研究过程;⑵选定一种方式判断机械能是否守恒;⑶选定一种表达式,列式求解。4.应用举例例7.如图所示,物块和斜面都是光滑的,物块从静止沿斜面下滑过程中,物块机械能是否守恒?系统机械能是否守恒?解:以物块和斜面系统为研究对象,很明显物块下滑过程中系统不受摩擦和介质阻力,故系统机械能守恒。又由于物块对斜面的压力是斜向左下方的,斜面将向左加速运动,即斜面的机械能将增大,因此物块的机械能一定将减少。Ns有些同学一看到“光滑斜面”,就认为物块本身机械能守恒。这里要提醒两条:⑴由于斜面本身要向左滑动,所以斜面对物块的弹力N和物块的实际位移s的方向已经不再垂直,弹力要对物块做负功,对物块来说已经不再满足“只有重力做功”的条件。⑵NsABCv0R例8.如图所示,半径R=0.40m的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A。一质量m=0.10kg的小球,以初速度v0=7.0m/s在水平地面上向左作加速度a=3.0m/s2的匀减速直线运动,运动4.0m后,冲上竖直半圆环,最后小球落在C点。求A、C间的距离(取重力加速度ABCv0R解:小球向A匀减速运动过程用运动学公式:v02-vA2=2as,得vA=5.0m/s;由A到B过程用机械能守恒:,得vB=3.0m/s,小球刚好能到达B点的条件是,得v´=2m/s,vB>v´,因此是合理的;小球确实由B点平抛,s=vBt,,可得s=1.2mABO例9.如图所示,质量分别为2m和3m的两个小球固定在一根轻质直角尺的两端A、B,直角尺的顶点O处有光滑的固定转动轴。AO、BO的长分别为2L和L。开始时直角尺的AO部分处于水平位置而B在O的正下方。让该系统由ABOv1v1v1v1/2BAO过程中A的重力势能减少,A、B的动能和B的重力势能增加;由v=ωr,A的瞬时速率总是B的2倍。因此有:K,解得K例10.如图所示,粗细均匀的U形管内装有总长为4L的水。开始时阀门K闭合,左右支管内水面高度差为L。打开阀门K解:由于不考虑摩擦阻力,故整个水柱的机械能守恒。从初始状态到左右支管水面相平为止,相当于有长L/2的水柱由左管移到右管。系统的重力势能减少,动能增加。该过程中,整个水柱势能的减少量等效于高L/2的水柱降低L/2,重力势能的减少。不妨设水柱总质量为8m,则,得。本题在应用机械能守恒定律时选用∑E增=∑E减建立方程,在计算系统重力势能变化时用了等效方法。需要注意的是:研究对象仍然是整个水柱,到两个支管水面相平时,整个水柱中的每一小部分的速率都是相同的。四、功能关系做功的过程是能量转化的过程,功是能的转化的量度。能量转化和守恒定律是自然界最基本的定律之一。在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。本章的主要定理、定律都是由这个基本原理出发而得到的。需要强调的是:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它个一个时刻相对应。两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。⑴物体动能的增量由外力做的总功来量度:W外=ΔEk,这就是动能定理。⑵物体重力势能的增量由重力做的功来量度:WG=-ΔEP,这就是势能定理。⑶物体机械能的增量由重力以外的其他力做的功来量度:W其=ΔE机,(W其表示除重力以外的其它力做的功),这就是机械能定理。⑷当W其=0时,只有重力做功,所以系统的机械能守恒。⑸一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能,即“摩擦生热”。fd=Q(d为两个物体间相对移动的路程)。vaFG⑹从更广义的角度看,如果我们确定了以某一个系统为研究对象(与外界没有热交换),那么该系统以外的物体对系统内物体做的总功等于系统内各种能量的vaFG例11.质量为m的物体在竖直向上的恒力F作用下减速上升了H,在这个过程中,下列说法中正确的有解:由以上三个定理不难得出正确答案是C。ABCD例12.如图所示,一根轻弹簧下端固定,竖立在水平面上。其正上方A位置有一只小球。小球从静止开始下落,在B位置接触弹簧的上端,在CABCD例13.如图所示,水平放置的传送带以v=2.0m/s匀速运转,皮带和传送轮间不打滑。将一个质量为m=0.40kg的物体轻轻地放在传送带左端,经过一段时间,该物体和传送带具有了同样的速度。与不放物体相比,电机在这段时间内多做的功是多少?s1s2d解:电机多做的功除了增加物体的动能以外,还增加了物体和皮带间摩擦产生的内能。设物体加速过程的位移为s1,传送带的位移为s2,相对滑行的距离为d,由于,s2=v0t,d=s2-s1=s1,而,Q=fd,所以W=mv0s1s2dBLLACD练习5.一传送带装置示意图如图,其中传送带经过AB区域时是水平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,为画出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大量的质量均为m的小货箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h。稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L。每个箱子在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段时的微小滑动)。已知在一段相当长的时间TBLLACD解:电动机做功的过程,电能除了转化为小货箱的机械能,还有一部分由于小货箱和传送带间的滑动摩擦而转化成内能。摩擦生热可以由Q=fd求得,其中f是相对滑动的两个物体间的摩擦力大小,d是这两个物体间相对滑动的路程。本题中设传送带速度一直是v,则相对滑动过程中传送带的平均速度就是小货箱的2倍,相对滑动路程d和小货箱的实际位移s大小相同,故摩擦生热和小货箱的末动能大小相同Q=mv2/2。因此有W=mv2+mgh。又由已知,在一段相当长的时间T内,共运送小货箱的数目为N,所以有,vT=NL,带入后得到。ABC例14.物体由足够长的固定斜面底端的A点,以100J的初动能沿斜面向上滑行,以斜面底端为重力势能的参考平面。由A上滑到B的过程中,物体的动能减小了60J,而机械能减小了18J。则物体ABC解:画出示意图如右,设物体上滑的最高点为C。上滑过程动能变化等于合外力做功,ΔEk=F合s∝s;重力势能变化等于重力做功的负值,ΔEP=mgh∝h∝s;机械能变化等于摩擦力做的功,ΔE机=fs∝s;摩擦生热等于克服摩擦力做功,Q=fs∝s。可见以上这些能量变化都和s成正比,因此很容易得到:上滑全过程中动能减小100J,机械能减小30J,重力势能增加70J,摩擦生热30J。J例15.“神舟五号”顺利发射升空后,在离地面340km的圆轨道上运行。运行中需要多次进行“轨道维持”。即通过控制飞船上发动机的点火时间和推力的大小方向,使飞船能保持在预定轨道上稳定运行。如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐变化,在这种情况下飞船的动能、重力势能和机械能变化情况将会是A.动能、重力势能和机械能都逐渐减小B.重力势能逐渐减小,动能逐渐增大,机械能不变C.重力势能逐渐增大,动能逐渐减小,机械能不变D.重力势能逐渐减小,动能逐渐增大,机械能逐渐减小解:阻力使卫星速度减小,万有引力没变,所需向心力减小,卫星将开始做向心运动,半径r和高度h将减小。由于重力做正功,卫星的重力势能减小;由于变化非常缓慢,卫星的运动仍可视为匀速圆周运动,由可知,卫星动能逐渐增大;由于克服阻力做功,根据机械能定理,卫星的机械能减小。答案选D。H上游水库下游水面d例16.抽水蓄能电站的工作原理是,在用电低谷时(如深夜),电站利用电网多余电能把水抽到高处蓄水池中,到用电高峰时,再利用蓄水池中的水发电。如图,蓄水池(上游水库)可视为长方体,有效总库容量(可用于发电)为V,蓄水后水位高出下游水面H,发电过程中上游水库水位最大落差为d。统计资料表明,该电站年抽水用电为2.4×108kWh,年发电量为1.8×108kWh。则下列计算结果正确的是(水的密度为ρH上游水库下游水面d用于发电的水的最大重力势能EP=ρVgHB.能用于发电的水的最大重力势能C.电站的总效率是100%D.该电站平均每天所发电能可供给一个大城市居民用电(电功率以105kW计)约10hH水库水位下游水位S解:重力势能的减少相当于水库中的水的重心由上游水库中心下降到下游水面,因此能用于发电的水的最大重力势能;电站的总效率应该等于年发电量和年抽水用电量之比,即η=1.8×108/2.4×108kWh=75%;每天提供电能约为年发电量的1/360=5×105kWH水库水位下游水位S*注意这种水力发电跟三峡水力发电的区别。三峡水库的水位可以认为是不变的。如右图所示,右端入水口的水在内外压强差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论