版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2017年江西省赣州市石城县中考数学一模试卷一、选择题(本题共6个小题,每小题3分,共18分)1.(3分)下列图形中,是中心对称图形的是()A. B. C. D.2.(3分)下列运算中,正确的是()A.m2×m3=m6 B.(m3)2=m5 C.m+m2=2m3 D.﹣m3÷m2=﹣m3.(3分)已知m,n是一元二次方程x2﹣4x﹣3=0的两个实数根,则代数式(m+1)(n+1)的值为()A.﹣6 B.﹣2 C.0 D.24.(3分)如图是一个底面为正方形的几何体的实物图,则其俯视图为()A. B. C. D.5.(3分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A. B. C. D.6.(3分)已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c﹣a=0的两根为m、n(m<n),则下列判断正确的是()A.m<n<x1<x2 B.m<x1<x2<n C.x1+x2>m+n D.b2﹣4ac≥0二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)当分式的值为0时,x的值是.8.(3分)已知a+b=8,a﹣b=4,则a2﹣b2=.9.(3分)如图,已知二次函数y=x2+bx+c的图象的对称轴是直线x=1,过抛物线上两点的直线AB平行于x轴,若点A的坐标为(0,),则点B的坐标为.10.(3分)如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为.11.(3分)如图,正方体的棱长为a,沿着共一个顶点的三个正方形的对角线裁截掉一个几何体之后,截面△ABC的面积=.12.(3分)以线段AC为对角线的四边形ABCD(它的四个顶点A、B、C、D按顺时针方向排列),已知AB=BC=CD,∠ABC=100°,∠CAD=40°;则∠BCD的大小为.三、解答题(本大题共11小题,每小题6分,共30分)13.(6分)(1)计算:|﹣|+(π﹣3)0+()﹣1﹣2cos45°(2)若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,求方程的另一个根.14.(6分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.15.(6分)如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.34x﹣2ya2y﹣xcb备用图34﹣216.(6分)如图,由6个形状、大小完全相同的小矩形组成大矩形网格,小矩形的顶点称为这个矩形网格的格点,请仅用无刻度直尺在矩形中完成下列画图.(1)在图1中画出一个顶点均在格点上的非特殊的平行四边形;(2)在图2中画出一个顶点均在格点上的正方形.17.(6分)小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小明按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.(1)若小明任意按下一个开关,则下列说法正确的是()A.小明打开的一定是楼梯灯;B.小明打开的可能是卧室灯;C.小明打开的不可能是客厅灯;D.小明打开走廊灯的概率是(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.18.(8分)反比例函数y=(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=,将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=(x>0)的图象恰好经过DC的中点E.(1)求k的值和直线AE的函数表达式;(2)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.19.(8分)某地区为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区20万用户中约有多少用户的用水全部享受基本价格?20.(8分)图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾斜角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求(1)真空管上端B到AD的距离(结果精确到0.01米);(2)铁架垂直管CE的长(结果精确到0.01米).21.(8分)在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值;(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.22.(10分)探究与应用.试完成下列问题:(1)如图①,已知等腰Rt△ABC中,∠C=90°,点O为AB的中点,作∠POQ=90°,分别交AC、BC于点P、Q,连结PQ、CO,求证:AP2+BQ2=PQ2;(2)如图②,将等腰Rt△ABC改为任意直角三角形,点O仍为AB的中点,∠POQ=90°,试探索上述结论AP2+BQ2=PQ2是否仍成立;(3)通过上述探究(可直接运用上述结论),试解决下面的问题:如图③,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点O为AB的中点,过C、O两点的圆分别交AC、BC于P、Q,连结PQ,求△PCQ面积的最大值.23.(12分)对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E,现有点A(2,0)和抛物线E上的点B(﹣1,n),请完成下列任务;【尝试】(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为(2)判断点A是否在抛物线E上;(3)求n的值.【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为.【应用】(1)二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+3和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由;(2)以AB为边作矩形ABCD,使得其中一个顶点落在y轴上;若抛物线E经过A,B,C,D其中的三点,求出所有符合条件的t的值.
2017年江西省赣州市石城县中考数学一模试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分)1.(3分)(2017•石城县一模)下列图形中,是中心对称图形的是()A. B. C. D.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:A.2.(3分)(2017•石城县一模)下列运算中,正确的是()A.m2×m3=m6 B.(m3)2=m5 C.m+m2=2m3 D.﹣m3÷m2=﹣m【解答】解:A、m2×m3=m5,错误;B、(m3)2=m6,错误;C、m与m2不是同类项,不能合并,错误;D、﹣m3÷m2=﹣m,正确;故选:D.3.(3分)(2017•石城县一模)已知m,n是一元二次方程x2﹣4x﹣3=0的两个实数根,则代数式(m+1)(n+1)的值为()A.﹣6 B.﹣2 C.0 D.2【解答】解:∵m,n是一元二次方程x2﹣4x﹣3=0的两个实数根,∴m+n=4,mn=﹣3,∴(m+1)(n+1)=mn+(m+n)+1=﹣3+4+1=2.故选D.4.(3分)(2017•石城县一模)如图是一个底面为正方形的几何体的实物图,则其俯视图为()A. B. C. D.【解答】解:从上面看易得到被一条直线分割成两个长方形的正方形.故选D.5.(3分)(2012•资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A. B. C. D.【解答】解:连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE,∴CD=2CE,∵MN∥AB,∴CD⊥AB,∴△CMN∽△CAB,∴,∵在△CMN中,∠C=90°,MC=6,NC=,∴S△CMN=CM•CN=×6×2=6,∴S△CAB=4S△CMN=4×6=24,∴S四边形MABN=S△CAB﹣S△CMN=24﹣6=18.故选C.6.(3分)(2017•石城县一模)已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c﹣a=0的两根为m、n(m<n),则下列判断正确的是()A.m<n<x1<x2 B.m<x1<x2<n C.x1+x2>m+n D.b2﹣4ac≥0【解答】解:当a>0,∵方程ax2+bx+c﹣a=0的两根为m、n,∴二次函数y=ax2+bx+c与直线y=a的交点在x轴上方,它们的横坐标分别为m、n,∴m<x1<x2<n;当a<0,∵方程ax2+bx+c﹣a=0的两根为m、n,∴二次函数y=ax2+bx+c与直线y=a的交点在x轴下方,它们的横坐标分别为m、n,∴m<x1<x2<n.故选B.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)(2017•石城县一模)当分式的值为0时,x的值是1.【解答】解:∵分式的值为0;∴x﹣1=0,∴x=1,故答案为1.8.(3分)(2017•石城县一模)已知a+b=8,a﹣b=4,则a2﹣b2=32.【解答】解:∵a+b=8,a﹣b=4,∴a2﹣b2=(a+b)(a﹣b)=8×4=32,故答案为:32.9.(3分)(2017•石城县一模)如图,已知二次函数y=x2+bx+c的图象的对称轴是直线x=1,过抛物线上两点的直线AB平行于x轴,若点A的坐标为(0,),则点B的坐标为(2,).【解答】解:∵二次函数y=x2+bx+c的图象的对称轴为过点(1,0)且与y轴平行的直线,∴抛物线的对称轴为x=1,∵直线AB与x轴平行,∴点A和点B关于直线x=1对称,∴B点坐标为(2,).故答案为(2,).10.(3分)(2012•泰安)如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为.【解答】解:连接AO并延长到圆上一点D,连接BD,可得AD为⊙O直径,故∠ABD=90°,∵⊙O的半径为5,∴AD=10,在Rt△ABD中,BD===8,∵∠ADB与∠ACB所对同弧,∴∠D=∠C,∴cosC=cosD===,故答案为:.11.(3分)(2017•石城县一模)如图,正方体的棱长为a,沿着共一个顶点的三个正方形的对角线裁截掉一个几何体之后,截面△ABC的面积=.【解答】解:∵正方体的每个面都是全等的正方形,∴AB=BC=AC,∵正方体的棱长为a,∴AB=AC=BC=a,∴AB边上的高为:•a=,∴S△ABC=•a•=.故答案为:.12.(3分)(2017•石城县一模)以线段AC为对角线的四边形ABCD(它的四个顶点A、B、C、D按顺时针方向排列),已知AB=BC=CD,∠ABC=100°,∠CAD=40°;则∠BCD的大小为80°或100°.【解答】解:∵AB=BC,∠ABC=100°,∴∠1=∠2=∠CAD=40°,∴AD∥BC,(1)如图1,过点C分别作CE⊥AB于E,CF⊥AD于F,∵∠1=∠CAD,∴CE=CF,在Rt△ACE与Rt△ACF中,,∴Rt△ACE≌Rt△ACF,在Rt△BCE与Rt△DCF中,,∴Rt△BCE≌Rt△DCF,∴∠ACE=∠ACF,∠BCE=∠△DCF,∴∠2=∠ACD=40°,∴∠BCD=80°;(2)如图2,∵AD∥BC,AB=CD′,∴四边形ABCD′是等腰梯形,∴∠BCD′=∠ABC=100°.综上所述,∠BCD=80°或100°.三、解答题(本大题共11小题,每小题6分,共30分)13.(6分)(2017•石城县一模)(1)计算:|﹣|+(π﹣3)0+()﹣1﹣2cos45°(2)若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,求方程的另一个根.【解答】解:(1)原式=+1+2﹣2×,=+1+2﹣,=3.(2)将x=﹣2代入x2+(k+3)x+k=0中,4﹣2(k+3)+k=0,解得:k=﹣2.将k代入原方程得:x2+x﹣2=(x﹣1)(x+2)=0,解得:x1=﹣2,x2=1.∴方程的另一个根为1.14.(6分)(2017•石城县一模)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE==10,∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到,∴AE=AF,∠EAF=90°,∴△AEF的面积=AE2=×100=50.15.(6分)(2009•淄博)如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.34x﹣2ya2y﹣xcb备用图34﹣2【解答】解:(1)由题意,得,解得;(2)如图16.(6分)(2017•石城县一模)如图,由6个形状、大小完全相同的小矩形组成大矩形网格,小矩形的顶点称为这个矩形网格的格点,请仅用无刻度直尺在矩形中完成下列画图.(1)在图1中画出一个顶点均在格点上的非特殊的平行四边形;(2)在图2中画出一个顶点均在格点上的正方形.【解答】解:(1)如图1所示:平行四边形,即为所求;(2)如图2所示:正方形,即为所求.17.(6分)(2017•石城县一模)小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小明按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.(1)若小明任意按下一个开关,则下列说法正确的是(D)A.小明打开的一定是楼梯灯;B.小明打开的可能是卧室灯;C.小明打开的不可能是客厅灯;D.小明打开走廊灯的概率是(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.【解答】解:(1)∵小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,∴小明任意按下一个开关,打开走廊灯的概率是,故选D.(2)画树状图得:∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是:=.18.(8分)(2017•石城县一模)反比例函数y=(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=,将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=(x>0)的图象恰好经过DC的中点E.(1)求k的值和直线AE的函数表达式;(2)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.【解答】解:(1)由已知得,在Rt△OAB中,OB=2,tan∠AOB=,∴AB=3,∴A点的坐标为(2,3),∴k=xy=6,∵DC由AB平移得到,点E为DC的中点,∴点E的纵坐标为,又∵点E在y=(x>0)的图象上,∴点E的坐标为(4,),设直线MN的函数表达式为y=k1x+b,则,解得,∴直线MN的函数表达式为y=﹣x+;(2)结论:AN=ME,理由:在表达式y=﹣x+中,令y=0可得x=6,令x=0可得y=,∴点M(6,0),N(0,),延长DA交y轴于点F,则AF⊥ON,且AF=2,OF=3,∴NF=ON﹣OF=x,∵CM=6﹣4=2=AF,EC==NF,在△ANF与△MEC中,,∴△ANF≌△MEC,∴AN=ME.19.(8分)(2017•石城县一模)某地区为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区20万用户中约有多少用户的用水全部享受基本价格?【解答】解:(1)由统计图可得,10÷10%=100(户)即此次调查抽取了100户的用水量数据;(2)用水量为“15吨~20吨”的用户有:100﹣10﹣36﹣25﹣9=20(户),补全的频数分布直方图如右图所示,扇形图中“15吨~20吨”部分的圆心角的度数是:×360°=72°;10(3)由题意可得,20×=13.2(万人)即该地区20万用户中约有13.2万用户的用水全部享受基本价格.20.(8分)(2011•宁德)图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾斜角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求(1)真空管上端B到AD的距离(结果精确到0.01米);(2)铁架垂直管CE的长(结果精确到0.01米).【解答】解:(1)过B作BF⊥AD于F.在Rt△ABF中,∵sin∠BAF=,∴BF=ABsin∠BAF=2.1sin40°≈1.350.∴真空管上端B到AD的距离约为1.35米.…(4分)(2)在Rt△ABF中,∵cos∠BAF=,∴AF=ABcos∠BAF=2.1cos40°≈1.609.…(6分)∵BF⊥AD,CD⊥AD,又BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD.…(7分)在Rt△EAD中,∵tan∠EAD=,∴ED=ADtan∠EAD=1.809tan25°≈0.844.…(9分)∴CE=CD﹣ED=1.350﹣0.844=0.506≈0.51∴安装铁架上垂直管CE的长约为0.51米.…(10分)21.(8分)(2013•常州)在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为45°或135°;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值;(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.【解答】解:(1)∵点A(6,0),点B(0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=90°+∠OBA=135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图,此时C点到AB的距离的最大值为CE的长,∴OE=AB=3,∴CE=OC+OE=3+3,△ABC的面积=CE•AB=×(3+3)×6=9+18.∴当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18.(3)①如图,过C点作CF⊥x轴于F,∵OC∥AD,∴∠COF=∠DAO,又∵∠ADO=∠CFO=90°∴Rt△OCF∽Rt△AOD,∴=,即=,解得CF=,在Rt△OCF中,OF==,∴C点坐标为(﹣,);故所求点C的坐标为(﹣,),当C点在第一象限时,同理可得C点的坐标为(,),综上可得,点C的坐标为(﹣,)或(,).②当C点坐标为(﹣,)或(,)时,直线BC是⊙O的切线.理由如下:在Rt△OCF中,OC=3,CF=,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADO=90°,∴OC⊥BC,∴直线BC为⊙O的切线;当C点坐标为(﹣,)或(,)时,显然直线BC与⊙O相切.综上可得:C点坐标为(,)或(﹣,)时,显然直线BC与⊙O相切.22.(10分)(2017•石城县一模)探究与应用.试完成下列问题:(1)如图①,已知等腰Rt△ABC中,∠C=90°,点O为AB的中点,作∠POQ=90°,分别交AC、BC于点P、Q,连结PQ、CO,求证:AP2+BQ2=PQ2;(2)如图②,将等腰Rt△ABC改为任意直角三角形,点O仍为AB的中点,∠POQ=90°,试探索上述结论AP2+BQ2=PQ2是否仍成立;(3)通过上述探究(可直接运用上述结论),试解决下面的问题:如图③,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点O为AB的中点,过C、O两点的圆分别交AC、BC于P、Q,连结PQ,求△PCQ面积的最大值.【解答】(1)证明:∵△ABC是等腰直角三角形,O为斜边AB中点,∴AO=OC=OB,∠A=∠B=∠OCQ=45°,∠AOC=90°,∵∠POQ=90°,∴∠AOP+∠POC=∠POC+∠COQ,∴∠AOP=∠COQ,在△AOP和△COQ中∴△AOP≌△COQ,∴AP=CQ,同理BQ=CP,在Rt△CPQ中,CP2+CQ2=PQ2,∴AP2+BQ2=PQ2.(2)解:还成立,理由是:延长QO到D,使OD=OQ,连接AD,PD,∵O是AB中点,∴AO=OB,在△AOD和△BOQ中∴△AOD≌△BOQ(SAS),∴AD=BQ,∠BAD=∠B,OD=OQ,∵PO⊥OQ,∴PD=PQ,∵∠C=90°,∴∠PAD=90°,在Rt△PAD中,由勾股定理得:AP2+AD2=PD2,∴AP2+BQ2=PQ2.(3)解:∵∠C=90°,∴PQ是直径,连接PO、OQ,则∠POQ=90°,∴AP2+BQ2=PQ2,设PC=a,CQ=b,∴(6﹣a)2+(8﹣b)2=a2+b2,∴3a+4b=25,∴b=﹣a+,∵S△PCQ=ab,∴S△PCQ=﹣a2+a=﹣(a﹣)2+.当a=时,△PCQ的面积的最大值是.23.(12分)(2017•石城县一模)对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E,现有点A(2,0)和抛物线E上的点B(﹣1,n),请完成下列任务;【尝试】(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为(1.﹣2)(2)判断点A是否在抛物线E上;(3)求n的值.【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为A(2,0)和B(﹣1,6).【应用】(1)二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+3和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由;(2)以AB为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 丰巢柜扫码取件流程及用户合同详解版B版
- 二零二五版办公家具定制与售后支持协议3篇
- 二零二五年度跨境离婚协议书及财产转移范本3篇
- 二零二五年度海洋资源开发项目技术人员聘任协议3篇
- 二零二五年度KTV加盟店运营管理及培训合同范本3篇
- 二零二五版公积金个人提前还款合同3篇
- 西安航空学院《材料科学基础I》2023-2024学年第一学期期末试卷
- 二零二五年度柑橘产品溯源与食品安全合同3篇
- 乌海职业技术学院《视觉艺术赏析与表达》2023-2024学年第一学期期末试卷
- 个性化桶装水供应服务协议2024版版B版
- 2024年关爱留守儿童工作总结
- GB/T 45092-2024电解水制氢用电极性能测试与评价
- 《算术平方根》课件
- DB32T 4880-2024民用建筑碳排放计算标准
- 2024-2024年上海市高考英语试题及答案
- 注射泵管理规范及工作原理
- 山东省济南市2023-2024学年高二上学期期末考试化学试题 附答案
- 大唐电厂采购合同范例
- GB/T 18724-2024印刷技术印刷品与印刷油墨耐各种试剂性的测定
- IEC 62368-1标准解读-中文
- 15J403-1-楼梯栏杆栏板(一)
评论
0/150
提交评论