版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省永州市新田一中高考仿真模拟数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等差数列的前项和为,若,,则()A.21 B.22 C.11 D.122.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.3.已知集合,集合,则A. B.或C. D.4.已知向量,则()A.∥ B.⊥ C.∥() D.⊥()5.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是()A. B.C. D.以上情况均有可能6.a为正实数,i为虚数单位,,则a=()A.2 B. C. D.17.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()A. B.C. D.8.已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的取值范围是()A. B. C. D.9.已知i是虚数单位,则1+iiA.-12+32i10.的展开式中有理项有()A.项 B.项 C.项 D.项11.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A. B. C. D.12.若直线的倾斜角为,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系xOy中,已知双曲线(a>0)的一条渐近线方程为,则a=_______.14.已知直角坐标系中起点为坐标原点的向量满足,且,,,存在,对于任意的实数,不等式,则实数的取值范围是______.15.不等式的解集为________16.若满足约束条件,则的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.18.(12分)已知顶点是坐标原点的抛物线的焦点在轴正半轴上,圆心在直线上的圆与轴相切,且关于点对称.(1)求和的标准方程;(2)过点的直线与交于,与交于,求证:.19.(12分)如图,三棱柱的侧棱垂直于底面,且,,,,是棱的中点.(1)证明:;(2)求二面角的余弦值.20.(12分)选修4-2:矩阵与变换(本小题满分10分)已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.21.(12分)过点P(-4,0)的动直线l与抛物线相交于D、E两点,已知当l的斜率为时,.(1)求抛物线C的方程;(2)设的中垂线在轴上的截距为,求的取值范围.22.(10分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由题意知成等差数列,结合等差中项,列出方程,即可求出的值.【详解】解:由为等差数列,可知也成等差数列,所以,即,解得.故选:A.【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.2、A【解析】
由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A.3、C【解析】
由可得,解得或,所以或,又,所以,故选C.4、D【解析】
由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】∵向量(1,﹣2),(3,﹣1),∴和的坐标对应不成比例,故、不平行,故排除A;显然,•3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),显然,和的坐标对应不成比例,故和不平行,故排除C;∴•()=﹣2+2=0,故⊥(),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.5、B【解析】
由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较.【详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,.故选:.【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.6、B【解析】
,选B.7、C【解析】
由题得,,又,联立解方程组即可得,,进而得出双曲线方程.【详解】由题得①又该双曲线的一条渐近线方程为,且被圆x2+y2﹣2cx=0截得的弦长为2,所以②又③由①②③可得:,,所以双曲线的标准方程为.故选:C【点睛】本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.8、B【解析】
构造函数(),求导可得在上单调递增,则,问题转化为,即至少有2个正整数解,构造函数,,通过导数研究单调性,由可知,要使得至少有2个正整数解,只需即可,代入可求得结果.【详解】构造函数(),则(),所以在上单调递增,所以,故问题转化为至少存在两个正整数x,使得成立,设,,则,当时,单调递增;当时,单调递增.,整理得.故选:B.【点睛】本题考查导数在判断函数单调性中的应用,考查不等式成立问题中求解参数问题,考查学生分析问题的能力和逻辑推理能力,难度较难.9、D【解析】
利用复数的运算法则即可化简得出结果【详解】1+i故选D【点睛】本题考查了复数代数形式的乘除运算,属于基础题。10、B【解析】
由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【详解】,,当,,,时,为有理项,共项.故选:B.【点睛】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.11、D【解析】
使用不同方法用表示出,结合平面向量的基本定理列出方程解出.【详解】解:,又解得,所以故选:D【点睛】本题考查了平面向量的基本定理及其意义,属于基础题.12、B【解析】
根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.【详解】由于直线的倾斜角为,所以,则故答案选B【点睛】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求.【详解】因为双曲线(a>0)的渐近线为,且一条渐近线方程为,所以.故答案为:.【点睛】本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养.14、【解析】
由题意可设,,,由向量的坐标运算,以及恒成立思想可设,的最小值即为点,到直线的距离,求得,可得不大于.【详解】解:,且,可设,,,,可得,可得的终点均在直线上,由于为任意实数,可得时,的最小值即为点到直线的距离,可得,对于任意的实数,不等式,可得,故答案为:.【点睛】本题主要考查向量的模的求法,以及两点的距离的运用,考查直线方程的运用,以及点到直线的距离,考查运算能力,属于中档题.15、【解析】
通过平方,将无理不等式化为有理不等式求解即可。【详解】由得,解得,所以解集是。【点睛】本题主要考查无理不等式的解法。16、4【解析】
作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间为,单调递减区间为;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值为,令,结合即可解决.【详解】(1),当时,,递增,当时,,递减.故的单调递增区间为,单调递减区间为.(2),,,设的根为,即有可得,,当时,,递减,当时,,递增.,所以,①当;②当时,设,递增,,所以.综上,.【点睛】本题考查了利用导数研究函数单调性以及函数恒成立问题,这里要强调一点,处理恒成立问题时,通常是构造函数,将问题转化为函数的极值或最值来处理.18、(1),;(2)证明见解析.【解析】分析:(1)设的标准方程为,由题意可设.结合中点坐标公式计算可得的标准方程为.半径,则的标准方程为.(2)设的斜率为,则其方程为,由弦长公式可得.联立直线与抛物线的方程有.设,利用韦达定理结合弦长公式可得.则.即.详解:(1)设的标准方程为,则.已知在直线上,故可设.因为关于对称,所以解得所以的标准方程为.因为与轴相切,故半径,所以的标准方程为.(2)设的斜率为,那么其方程为,则到的距离,所以.由消去并整理得:.设,则,那么.所以.所以,即.点睛:(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.19、(1)详见解析;(2).【解析】
(1)根据平面,四边形是矩形,由为中点,且,利用平面几何知识,可得,又平面,所以,根据线面垂直的判定定理可有平面,从而得证.(2)分别以,,为,,轴建立空间直角坐标系,得到,,,,分别求得平和平面的法向量,代入二面角向量公式求解.【详解】(1)证明:∵平面,∴四边形是矩形,∵为中点,且,∴,∵,,,∴.∴,∵,∴与相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2)如图,分别以,,为,,轴建立空间直角坐标系,则,,,设平面的法向量为,则,,解得:,同理,平面的法向量,设二面角的大小为,则.即二面角的余弦值为.【点睛】本题主要考查线线垂直、线面垂直的转化以及二面角的求法,还考查了转化化归的思想和推理论证、运算求解的能力,属于中档题.20、解:设特征向量为α=对应的特征值为λ,则=λ,即因为k≠0,所以a=2.5分因为,所以A=,即=,所以2+k=3,解得k=2.综上,a=2,k=2.20分【解析】试题分析:由特征向量求矩阵A,由逆矩阵求k考点:特征向量,逆矩阵点评:本题主要考查了二阶矩阵,以及特征值与特征向量的计算,考查逆矩阵.21、;【解析】
根据题意,求出直线方程并与抛物线方程联立,利用韦达定理,结合,即可求出抛物线C的方程;设,的中点为,把直线l方程与抛物线方程联立,利用判别式求出的取值范围,利用韦达定理求出,进而求出的中垂线方程,即可求得在轴上的截距的表达式,然后根据的取值范围求解即可.【详解】由题意可知,直线l的方程为,与抛物线方程方程联立可得,,设,由韦达定理可得,,因为,,所以,解得,所以抛物线C的方程为;设,的中点为,由,消去可得,所以判别式,解得或,由韦达定理可得,,所以的中垂线方程为,令则,因为或,所以即为所求.【点睛】本题考查抛物线的标准方程和直线与抛物线的位置关系,考查向量知识的运用;考查学生分析问题、解决问题的能力和运算求解能力;属于中档题.22、(1)或(2)【解析】
(1)分类讨论去绝对值即可;(2)根据条件分a<﹣3和a≥﹣3两种情况,由[﹣2,1]⊆A建立关于a的不等式,然后求出a的取值范围.【详解】(1)当a=﹣1时,f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴当x≤﹣1时,原不等式可化为﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;当时,原
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024水果冷饮配送监管协议模板
- 精简版土地租赁合同样本
- 2024版产品供货合同协议书编写
- 配偶间房屋买卖协议书范例
- 怡清网络家园公司广告合同的法律规定
- 标准房地产抵押合同范文大全
- 2024餐馆转让协议书模板
- 工业园区合作伙伴协议样本
- 政府机关电脑购买合同
- 规范土地租赁协议示范
- 广告摄影的技巧与实践
- 预防一氧化碳中毒安全教育完整PPT
- 镇域经济的发展与思考
- 安全生产的目标设定与衡量指标
- 河道清淤施工方案和专项施工方案
- -天津市南开区2023-2024学年八年级上学期11月期中英语试题
- 早发性卵巢功能不全的临床诊疗专家共识(2023版)
- 电梯井、集水井内侧模板施工工艺
- 职业生涯规划-旅游管理
- 守岛战士生活艰苦的资料
- 《融合新闻创作》教学课件-项目四 移动直播新闻制作
评论
0/150
提交评论