2021年山东省济宁市中考数学试卷(含解析版)_第1页
2021年山东省济宁市中考数学试卷(含解析版)_第2页
2021年山东省济宁市中考数学试卷(含解析版)_第3页
2021年山东省济宁市中考数学试卷(含解析版)_第4页
2021年山东省济宁市中考数学试卷(含解析版)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求。1.(3分)若盈余2万元记作+2万元,则﹣2万元表示()A.盈余2万元 B.亏损2万元 C.亏损﹣2万元 D.不盈余也不亏损2.(3分)一个圆柱体如图所示,下面关于它的左视图的说法其中正确的是()A.既是轴对称图形,又是中心对称图形 B.既不是轴对称图形,又不是中心对称图形 C.是轴对称图形,但不是中心对称图形 D.是中心对称图形,但不是轴对称图形3.(3分)下列各式中,正确的是()A.x+2x=3x2 B.﹣(x﹣y)=﹣x﹣y C.(x2)3=x5 D.x5÷x3=x24.(3分)如图,AB∥CD,BC∥DE,若∠B=72°28′,那么∠D的度数是()A.72°28′ B.101°28′ C.107°32′ D.127°32′5.(3分)计算÷(a+1﹣)的结果是()A. B. C. D.6.(3分)不等式组的解集在数轴上表示正确的是()A. B. C. D.7.(3分)如图,正五边形ABCDE中,∠CAD的度数为()A.72° B.45° C.36° D.35°8.(3分)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n的值等于()A.2019 B.2020 C.2021 D.20229.(3分)如图,已知△ABC.(1)以点A为圆心,以适当长为半径画弧,交AC于点M,交AB于点N.(2)分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BAC的内部相交于点P.(3)作射线AP交BC于点D.(4)分别以A,D为圆心,以大于AD的长为半径画弧,两弧相交于G,H两点.(5)作直线GH,交AC,AB分别于点E,F.依据以上作图,若AF=2,CE=3,BD=,则CD的长是()A. B.1 C. D.410.(3分)按规律排列的一组数据:,,□,,,,…,其中□内应填的数是()A. B. C. D.二、填空题:本大题共5小题,每小题3分,共15分。11.(3分)数字6100000用科学记数法表示是.12.(3分)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.13.(3分)已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是.14.(3分)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是.15.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是.(只填序号)三、解答题:本大题共7小题,共55分。16.(5分)计算:|﹣1|+cos45°﹣()﹣1+.17.(7分)某校为了解九年级学生体质健康情况,随机抽取了部分学生进行体能测试,并根据测试结果绘制了不完整的条形统计图和扇形统计图,请回答下列问题.(1)在这次调查中,“优秀”所在扇形的圆心角的度数是;(2)请补全条形统计图;(3)若该校九年级共有学生1200人,则估计该校“良好”的人数是;(4)已知“不及格”的3名学生中有2名男生、1名女生,如果从中随机抽取两名同学进行体能加试,请用列表法或画树状图的方法,求抽到两名男生的概率是多少?18.(7分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点C(2,0),点B(0,4),反比例函数y=(x>0)的图象经过点A.(1)求反比例函数的解析式;(2)将直线OA向上平移m个单位后经过反比例函数y=(x>0)图象上的点(1,n),求m,n的值.19.(8分)如图,点C在以AB为直径的⊙O上,点D是BC的中点,连接OD并延长交⊙O于点E,作∠EBP=∠EBC,BP交OE的延长线于点P.(1)求证:PB是⊙O的切线;(2)若AC=2,PD=6,求⊙O的半径.20.(8分)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?21.(9分)研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.(1)阅读材料立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.例如,正方体ABCD﹣A′B′C′D′(图1),因为在平面AA′C′C中,CC′∥AA',AA′与AB相交于点A,所以直线AB与AA′所成的∠BAA′就是既不相交也不平行的两条直线AB与CC′所成的角.解决问题如图1,已知正方体ABCD﹣A′B′C′D',求既不相交也不平行的两直线BA′与AC所成角的大小.(2)如图2,M,N是正方体相邻两个面上的点;①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是;②在所选正确展开图中,若点M到AB,BC的距离分别是2和5,点N到BD,BC的距离分别是4和3,P是AB上一动点,求PM+PN的最小值.22.(11分)如图,直线y=﹣x+分别交x轴、y轴于点A,B,过点A的抛物线y=﹣x2+bx+c与x轴的另一交点为C,与y轴交于点D(0,3),抛物线的对称轴l交AD于点E,连接OE交AB于点F.(1)求抛物线的解析式;(2)求证:OE⊥AB;(3)P为抛物线上的一动点,直线PO交AD于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与△ACD相似?若存在,求点P的横坐标;若不存在,请说明理由.

2021年山东省济宁市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求。1.(3分)若盈余2万元记作+2万元,则﹣2万元表示()A.盈余2万元 B.亏损2万元 C.亏损﹣2万元 D.不盈余也不亏损【分析】根据正数和负数表示具有相反意义的量解答.【解答】解:﹣2万元表示亏损2万元,故选:B.【点评】本题考查了正数和负数的意义,正数表示盈余,负数表示亏损,这是解题的关键.2.(3分)一个圆柱体如图所示,下面关于它的左视图的说法其中正确的是()A.既是轴对称图形,又是中心对称图形 B.既不是轴对称图形,又不是中心对称图形 C.是轴对称图形,但不是中心对称图形 D.是中心对称图形,但不是轴对称图形【分析】圆柱体的左视图是长方形,再根据长方形的对称性进行判断即可.【解答】解:圆柱体的左视图是长方形,而长方形既是轴对称图形,也是中心对称图形,故选:A.【点评】本题考查简单几何体的左视图以及轴对称图形和中心对称图形,掌握圆柱体左视图的形状,理解轴对称图形和中心对称图形的意义是正确判断的前提.3.(3分)下列各式中,正确的是()A.x+2x=3x2 B.﹣(x﹣y)=﹣x﹣y C.(x2)3=x5 D.x5÷x3=x2【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数的幂相除,底数不变指数相减,幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、应为x+2x=3x,故本选项错误;B、应为﹣(x﹣y)=﹣x+y,故本选项错误;C、(x2)3=x2×3=x6,,故本选项错误;D、x5÷x3=x5﹣3=x2,故本选项正确.故选:D.【点评】本题主要考查合并同类项法则,同底数幂的除法,幂的乘方,熟练掌握运算性质是解题的关键.4.(3分)如图,AB∥CD,BC∥DE,若∠B=72°28′,那么∠D的度数是()A.72°28′ B.101°28′ C.107°32′ D.127°32′【分析】先根据AB∥CD求出∠C的度数,再由BC∥DE即可求出∠D的度数.【解答】解:∵AB∥CD,∠B=72°28′,∴∠C=∠B=72°28′,∵BC∥DE,∴∠D+∠C=180°,∴∠D=180°﹣∠C=107°32′,故选:C.【点评】本题考查的是平行线的性质,熟记平行线的性质定理是解题的关键.5.(3分)计算÷(a+1﹣)的结果是()A. B. C. D.【分析】根据分式的混合运算法则进行计算,先算乘除,后算加减,如果有小括号先算小括号里面的.【解答】解:原式=÷[]=÷==,故选:A.【点评】本题考查分式的混合运算,掌握运算顺序和计算法则准确计算是解题关键.6.(3分)不等式组的解集在数轴上表示正确的是()A. B. C. D.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出不等式组的解集即可.【解答】解:,解不等式①,得x≥﹣1,解不等式②,得x<3,所以不等式组的解集是﹣1≤x<3,在数轴上表示出来为:,故选:B.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.7.(3分)如图,正五边形ABCDE中,∠CAD的度数为()A.72° B.45° C.36° D.35°【分析】首先可根据五边形内角和公式求出每个内角的度数,然后求出∠CAB和∠DAE,即可求出∠CAD.【解答】解:根据正多边形内角和公式可得,正五边形ABCDE的内角和=180°×(5﹣2)=540°,则∠BAE=∠B=∠E==108°,根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,∴∠CAD=108°﹣36°﹣36°=36°,故选:C.【点评】本题考查多边形内角和公式,熟记正多边形的性质是解题的关键.8.(3分)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n的值等于()A.2019 B.2020 C.2021 D.2022【分析】根据一元二次方程根的定义得到m2+m=2021,则m2+2m+n=2021+m+n,再利用根与系数的关系得到m+n=﹣1,然后利用整体代入的方法计算.【解答】解:∵m是一元二次方程x2+x﹣2021=0的实数根,∴m2+m﹣2021=0,∴m2+m=2021,∴m2+2m+n=m2+m+m+n=2021+m+n,∵m,n是一元二次方程x2+x﹣2021=0的两个实数根,∴m+n=﹣1,∴m2+2m+n=2021﹣1=2020.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程的解.9.(3分)如图,已知△ABC.(1)以点A为圆心,以适当长为半径画弧,交AC于点M,交AB于点N.(2)分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BAC的内部相交于点P.(3)作射线AP交BC于点D.(4)分别以A,D为圆心,以大于AD的长为半径画弧,两弧相交于G,H两点.(5)作直线GH,交AC,AB分别于点E,F.依据以上作图,若AF=2,CE=3,BD=,则CD的长是()A. B.1 C. D.4【分析】利用作法得AD平分∠BAC,EF垂直平分AD,所以∠EAD=∠FAD,EA=ED,FA=FD,再证明四边形AEDF为菱形得到AE=AF=2,然后利用平行线分线段成比例定理计算CD的长.【解答】解:由作法得AD平分∠BAC,EF垂直平分AD,∴∠EAD=∠FAD,EA=ED,FA=FD,∵EA=ED,∴∠EAD=∠EDA,∴∠FAD=∠EDA,∴DE∥AF,同理可得AE∥DF,∴四边形AEDF为平行四边形,而EA=ED,∴四边形AEDF为菱形,∴AE=AF=2,∵DE∥AB,∴=,即=,∴CD=.故选:C.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了角平分线的性质和垂直平分线的性质.10.(3分)按规律排列的一组数据:,,□,,,,…,其中□内应填的数是()A. B. C. D.【分析】分子为连续的奇数,分母为序号的平方+1,根据规律即可得到答案.【解答】解:观察这排数据发现:分子为连续的奇数,分母为序号的平方+1,∴第n个数据为:.当n=3时,□的分子为5,分母=32+1=10,∴这个数为=,故选:D.【点评】本题考查了数字的探索规律,分子和分母分别寻找规律是解题的关键.二、填空题:本大题共5小题,每小题3分,共15分。11.(3分)数字6100000用科学记数法表示是6.1×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示6100000,应记作6.1×106,故答案是:6.1×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件AD=AB(答案不唯一),使△ABC≌△ADC.【分析】本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.13.(3分)已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是y=+2.【分析】根据平均数的公式直接列式即可得到函数解析式.【解答】解:根据题意得:y=(0+1+x+3+6)÷5=+2.故答案为:y=+2.【点评】本题主要考查平均数的概念,熟练掌握平均数的公式是解题的关键.14.(3分)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是﹣.【分析】根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△COD的面积和扇形BOD的面积,从而可以解答本题.【解答】解,连接OD,过D作DE⊥BC于E,在△ABC中,∠ABC=90°,AB=2,AC=4,∴sinC===,BC===2,∴∠C=30°,∴∠DOB=60°,∵OD=BC=,∴DE=,∴阴影部分的面积是:2×2﹣﹣=﹣,故答案为:﹣.【点评】本题考查扇形面积的计算、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.15.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是①②④.(只填序号)【分析】根据题意和函数图象,可以判断各个小题中的结论是否成立,本题得以解决.【解答】解:由图象可得,a<0,b>0,c>0,则abc<0,故①正确;∵﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;∵函数图象与x轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线x=1,∴函数图象与x轴的另一个交点在点(0,0)和点(﹣1,0)之间,故④正确;∴当x=﹣1时,y=a﹣b+c<0,∴y=a+2a+c<0,∴3a+c<0,故③错误;故答案为:①②④.【点评】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.三、解答题:本大题共7小题,共55分。16.(5分)计算:|﹣1|+cos45°﹣()﹣1+.【分析】根据绝对值,特殊角的三角函数值,负整数指数幂,二次根式的化简计算即可.【解答】解:原式=﹣1+﹣+2=﹣1+2=3﹣1.【点评】本题考查了绝对值,特殊角的三角函数值,负整数指数幂,二次根式的化简,考核学生的计算能力,注意()﹣1=.17.(7分)某校为了解九年级学生体质健康情况,随机抽取了部分学生进行体能测试,并根据测试结果绘制了不完整的条形统计图和扇形统计图,请回答下列问题.(1)在这次调查中,“优秀”所在扇形的圆心角的度数是108°;(2)请补全条形统计图;(3)若该校九年级共有学生1200人,则估计该校“良好”的人数是510人;(4)已知“不及格”的3名学生中有2名男生、1名女生,如果从中随机抽取两名同学进行体能加试,请用列表法或画树状图的方法,求抽到两名男生的概率是多少?【分析】(1)由360°乘以“优秀”的人数所占的比例即可;(2)求出这次调查的人数为:12÷30%=40(人),得出及格的人数,补全条形统计图即可;(3)由该校总人数乘以“良好”的人数所占的比例即可;(4)画树状图,共有6种等可能的结果,抽到两名男生的结果有2种,则由概率公式求解即可.【解答】解:(1)在这次调查中,“优秀”所在扇形的圆心角的度数是:360°×30%=108°,故答案为:108°;(2)这次调查的人数为:12÷30%=40(人),则及格的人数为:40﹣3﹣17﹣12=8(人),补全条形统计图如下:(3)估计该校“良好”的人数为:1200×=510(人),故答案为:510人;(4)画树状图如图:共有6种等可能的结果,抽到两名男生的结果有2种,∴抽到两名男生的概率为=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.也考查了条形统计图和扇形统计图.18.(7分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点C(2,0),点B(0,4),反比例函数y=(x>0)的图象经过点A.(1)求反比例函数的解析式;(2)将直线OA向上平移m个单位后经过反比例函数y=(x>0)图象上的点(1,n),求m,n的值.【分析】(1)过A作AD⊥x轴于D,证明△BOC≌△CDA,可得OB=CD,OC=AD,根据C(2,0),B(0,4),得A(6,2),而反比例函数y=(x>0)的图象经过点A,故2=,解得k=12,即可得反比例函数的解析式为y=;(2)求出直线OA解析式为y=x,可得将直线OA向上平移m个单位后所得直线解析式为y=x+m,再由点(1,n)在反比例函数y=(x>0)图象上,得n=12,即直线OA向上平移m个单位后经过的点是(1,12),即可求出m=.【解答】解:(1)过A作AD⊥x轴于D,如图:∵∠ACB=90°,∴∠OBC=90°﹣∠BCO=∠ACD,在△BOC和△CDA中,,∴△BOC≌△CDA(AAS),∴OB=CD,OC=AD,∵C(2,0),B(0,4),∴AD=2,CD=4,∴A(6,2),∵反比例函数y=(x>0)的图象经过点A,∴2=,解得k=12,∴反比例函数的解析式为y=;(2)由(1)得A(6,2),设直线OA解析式为y=tx,则2=6t,解得t=,∴直线OA解析式为y=x,将直线OA向上平移m个单位后所得直线解析式为y=x+m,∵点(1,n)在反比例函数y=(x>0)图象上,∴n==12,∴直线OA向上平移m个单位后经过的点是(1,12),∴12=+m,∴m=.【点评】本题考查一次函数与反比例函数的综合应用,涉及三角形全等的判定及性质,解题的关键是由△BOC≌△CDA得到OB=CD,OC=AD及待定系数法的运用.19.(8分)如图,点C在以AB为直径的⊙O上,点D是BC的中点,连接OD并延长交⊙O于点E,作∠EBP=∠EBC,BP交OE的延长线于点P.(1)求证:PB是⊙O的切线;(2)若AC=2,PD=6,求⊙O的半径.【分析】(1)由AB为直径,可得∠ACB=90°,又D为BC中点,O为AB中点,可得OD∥AC,从而∠ODB=90°.由OB=OE得∠OEB=∠OBE,又∠OEB=∠P+∠EBP,∠OBE=∠OBD+∠EBC,所以∠P+∠EBP=∠OBD+∠EBC,又∠EBP=∠EBC,得∠P=∠OBD.又∠BOD+∠OBD=90°,从而可得∠BOD+∠P=90°,即∠OBP=90°.则可证PB为⊙O切线;(2)由(1)可得OD=1,从而PO=7,可证明△BDP∽△OBP,从而得比例,解得BP=,最后由勾股定理可求半径OB.【解答】解:(1)证明:∵AB为直径,∴∠ACB=90°,又D为BC中点,O为AB中点,故OD=,OD∥AC,∴∠ODB=∠ACB=90°.∵OB=OE,∴∠OEB=∠OBE,又∵∠OEB=∠P+∠EBP,∠OBE=∠OBD+∠EBC,∴∠P+∠EBP=∠OBD+∠EBC,又∠EBP=∠EBC,∴∠P=∠OBD.∵∠BOD+∠OBD=90°,∴∠BOD+∠P=90°,∴∠OBP=90°.又OB为半径,故PB是⊙O的切线.(2)∵AC=2,由(1)得OD==1,又PD=6,∴PO=PD+OD=6+1=7.∵∠P=∠P,∠BDP=∠OBP=90°,∴△BDP∽△OBP.∴,即BP2=OP•DP=7×6=42,∴BP=.∴OB===.故⊙O的半径为.【点评】本题属于主要考查了圆周角定理,三角形中位线性质定理,等腰三角形性质,圆切线的判定与性质,相似三角形的判定与性质,勾股定理等知识点.20.(8分)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?【分析】(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x﹣5)元,根据题意列出方程,解方程即可,分式方程注意验根;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值.【解答】解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x﹣5)元,根据题意得:+=100,整理得:x2﹣18x+45=0,解得:x=15或x=3(舍去),经检验,x=15是原分式方程的解,符合实际,∴x﹣5=15﹣5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:w=(15﹣a)(100+20a)=﹣20a2+200a+1500=﹣20(a﹣5)2+2000,∵a=﹣20,当a=5时,函数有最大值,最大值是2000元,答:当降价5元时,该商场利润最大,最大利润是2000元.【点评】本题考查二次函数的应用和分式方程的应用,关键是根据题意列出函数关系式.21.(9分)研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.(1)阅读材料立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.例如,正方体ABCD﹣A′B′C′D′(图1),因为在平面AA′C′C中,CC′∥AA',AA′与AB相交于点A,所以直线AB与AA′所成的∠BAA′就是既不相交也不平行的两条直线AB与CC′所成的角.解决问题如图1,已知正方体ABCD﹣A′B′C′D',求既不相交也不平行的两直线BA′与AC所成角的大小.(2)如图2,M,N是正方体相邻两个面上的点;①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是丙;②在所选正确展开图中,若点M到AB,BC的距离分别是2和5,点N到BD,BC的距离分别是4和3,P是AB上一动点,求PM+PN的最小值.【分析】(1)如图1中,连接BC′.证明△A′BC′是等边三角形,推出∠BA′C′=60°,由题意可知∠C′A′B是两条直线AC与BA′所成的角.(2)根据立方体平面展开图的特征,解决问题即可.(3)如图丙中,作点N关于AD的对称点K,连接MK交AD于P,连接PN,此时PM+PN的值最小,最小值为线段MK的值,过点M作MJ⊥NK于J.利用勾股定理求出MK即可.【解答】解:(1)如图1中,连接BC′.∵A′B=BC′=A′C′,∴△A′BC′是等边三角形,∴∠BA′C′=60°,∵AC∥A′C′,∴∠C′A′B是两条直线AC与BA′所成的角,∴两直线BA′与AC所成角为60°.(2)①观察图形可知,图形丙是图2的展开图,故答案为:丙.②如图丙中,作点N关于AD的对称点K,连接MK交AD于P,连接PN,此时PM+PN的值最小,最小值为线段MK的值,过点M作MJ⊥NK于J.由题意在Rt△MKJ中,∠MJK=90°,MJ=5+3=8,JK=8﹣(4﹣2)=6,∴MK===10,∴PM+PN的最小值为10.【点评】本题考查轴对称最短问题,平面展开图,平行线的性质,勾股定理等知识,解题的关键是理解立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角,学会利用轴对称的性质解决最短问题,属于中考常考题型.22.(11分)如图,直线y=﹣x+分别交x轴、y轴于点A,B,过点A的抛物线y=﹣x2+bx+c与x轴的另一交点为C,与y轴交于点D(0,3),抛物线的对称轴l交AD于点E,连接OE交AB于点F.(1)求抛物线的解析式;(2)求证:OE⊥AB;(3)P为抛物线上的一动点,直线PO交AD于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与△ACD相似?若存在,求点P的横坐标;若不存在,请说明理由.【分析】(1)根据直线y=﹣x+分别

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论