山东省安丘市红沙沟镇红沙沟中学2024届八年级下册数学期末质量检测模拟试题含解析_第1页
山东省安丘市红沙沟镇红沙沟中学2024届八年级下册数学期末质量检测模拟试题含解析_第2页
山东省安丘市红沙沟镇红沙沟中学2024届八年级下册数学期末质量检测模拟试题含解析_第3页
山东省安丘市红沙沟镇红沙沟中学2024届八年级下册数学期末质量检测模拟试题含解析_第4页
山东省安丘市红沙沟镇红沙沟中学2024届八年级下册数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省安丘市红沙沟镇红沙沟中学2024届八年级下册数学期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列关于变量x,y的关系,其中y不是x的函数的是()A. B.C. D.2.如图所示,由已知条件推出结论错误的是()A.由∠1=∠5,可以推出AB∥CD B.由AD∥BC,可以推出∠4=∠8C.由∠2=∠6,可以推出AD∥BC D.由AD∥BC,可以推出∠3=∠73.若直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是A.-1 B.0 C.1 D.24.如图,在△ABC中,D,E分别是边AB,AC的中点,已知BC=10,则DE的长为()A.3B.4C.5D.65.如图,是一张平行四边形纸片ABCD,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形.乙:分别作∠A与∠B的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.对于甲、乙两人的作法,可判断()A.甲正确,乙错误 B.甲错误,乙正确C.甲、乙均正确 D.甲、乙均错误6.要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的()A.方差 B.中位数 C.众数 D.平均数7.如图,在四边形中,,点分别为线段上的动点(含端点,但点不与点重合),点分别为的中点,则长度的最大值为()A. B. C. D.8.已知,若当时,函数的最大值与最小值之差是1,则a的值为()A. B. C.2 D.39.若分式有意义,则x的取值范围是()A.x≠﹣1 B.x≠0 C.x>﹣1 D.x<﹣110.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b二、填空题(每小题3分,共24分)11.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.12.如图,在▱ABCD中(AD>AB),用尺规作图作射线BP交AD于点E,若∠D=50°,则∠AEB=___度.13.若正多边形的每一个内角为,则这个正多边形的边数是__________.14.在平行四边形ABCD中,O是对角线AC、BD的交点,AC⊥BC,且AB=10㎝,AD=6㎝,则OB=_______________.15.在平面直角坐标系中,将直线y=2x-1向上平移动4个单位长度后,所得直线的解析式为____________.16.已知实数满足,则以的值为两边长的等腰三角形的周长是_________________.17.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.18.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.三、解答题(共66分)19.(10分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点,求这个一次函数的解析式.20.(6分)如图,是的直径,直线与相切于点,且与的延长线交于点,点是的中点.(1)求证:;(2)若,的半径为3,一只蚂蚁从点出发,沿着爬回至点,求蚂蚁爬过的路程,,结果保留一位小数).21.(6分)如图,∠B=90°,AB=4,BC=3,CD=l2,AD=13,点E是AD的中点,求CE的长.22.(8分)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?23.(8分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系式.根据题中所给信息解答以下问题:(1)甲、乙两地之间的距离为______km;图中点C的实际意义为:______;慢车的速度为______,快车的速度为______;(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;(3)若在第一列快车与慢车相遇时,第二列车从乙地出发驶往甲地,速度与第一列快车相同,请直接写出第二列快车出发多长时间,与慢车相距200km.24.(8分)如图,四边形ABCD是正方形,点E是BC边上的点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图①,当点E是BC边上任一点(不与点B、C重合)时,求证:AE=EF.(2)如图②当点E是BC边的延长线上一点时,(1)中的结论还成立吗?(填成立或者不成立).(3)当点E是BC边上任一点(不与点B、C重合)时,若已知AE=EF,那么∠AEF的度数是否发生变化?证明你的结论.25.(10分)如图,在平面直角坐标系中,O为坐标原点,P、Q是反比例函数(x>0)图象上的两点,过点P、Q分别作直线且与x、y轴分别交于点A、B和点M、N.已知点P为线段AB的中点.(1)求△AOB的面积(结果用含a的代数式表示);(2)当点Q为线段MN的中点时,小菲同学连结AN,MB后发现此时直线AN与直线MB平行,问小菲同学发现的结论正确吗?为什么?26.(10分)如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)(1)求直线AB的函数的表达式;(2)直接写出不等式(kx+b)﹣ax<0的解集;(3)求△AOC的面积;(4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P的坐标.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.【详解】解:选项ABD中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;只有选项C中,x取1个值,y有2个值与其对应,故y不是x的函数.故选C.【点睛】此题主要考查了函数的定义,正确掌握函数定义是解题关键.2、B【解析】

根据平行线的判定以及性质,对各选项分析判断即可利用排除法求解.【详解】解:A、由∠1=∠5,可以推出AB∥CD,故本选项正确;

B、由AB∥CD,可以推出∠4=∠8,故本选项错误;

C、由∠2=∠6,可以推出AD∥BC,故本选项正确;

D、由AD∥BC,可以推出∠3=∠7,故本选项正确.

故选B.【点睛】本题考查了平行线的判定与性质,找准构成内错角的截线与被截线是解题的关键.3、D【解析】

联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【详解】解:联立,解得:,∵交点在第一象限,∴,解得:a>1.故选D.【点睛】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.4、C【解析】解:∵△ABC中,D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,故DE=AD=×10=1.故选C5、C【解析】

由甲乙的做法,根据菱形的判定方法可知正误.【详解】解:甲的作法如图所示,∵四边形ABCD是平行四边形∴AD∥BC∴AE∥CF,∠EAO=∠FCO又∵EF垂直平分AC∴AO=CO,AE=CE又∵∠AOE=∠COF∴ΔAOE≅ΔCOF(ASA)∴AE=CF∴四边形AFCE为平行四边形又∵AE=CE∴四边形AFCE为菱形所以甲的作法正确.乙的作法如图所示∵AD∥BC∴∠FAE=∠BEA∵AE平分∠BAD∴∠FAE=∠BAE∴∠BEA=∠BAE∴BA=BE同理可得AB=AF∴AF=BE又∵AF∥BE∴四边形ABEF为平行四边形∵AB=AF∴四边形ABEF为菱形所以乙的作法正确故选:C【点睛】本题考查了菱形的判定,熟练运用菱形的判定进行证明是解题的关键.6、A【解析】

由于方差是用来衡量一组数据波动大小的量,故判断两队舞蹈队的身高较整齐通常需要比较两个队身高的方差.故选A考点:统计量的选择;方差7、B【解析】

连接BD、ND,由勾股定理得可得BD=5,由三角形中位线定理可得EF=DN,当DN最长时,EF长度的最大,即当点N与点B重合时,DN最长,由此即可求得答案.【详解】连接BD、ND,由勾股定理得,BD==5∵点E、F分别为DM、MN的中点,∴EF=DN,当DN最长时,EF长度的最大,∴当点N与点B重合时,DN最长,∴EF长度的最大值为BD=2.5,故选B.【点睛】本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.8、C【解析】

根据反比例函数的性质和题意,利用分类讨论的数学思想可以求得a的值,本题得以解决.【详解】解:当时,函数中在每个象限内,y随x的增大而增大,∵当1≤x≤2时,函数的最大值与最小值之差是1,∴,得a=-2(舍去),当a>0时,函数中在每个象限内,y随x的增大而减小,∵当1≤x≤2时,函数的最大值与最小值之差是1,∴,得a=2,故选择:C.【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质和分类讨论的数学思想解答.9、A【解析】

根据分式有意义的条件即可求出答案.【详解】解:由题意可知:x+1≠0,即x≠-1故选:A.【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.10、B【解析】

分别求出a、b、c、d的值,然后进行比较大小进行排序即可.【详解】解:a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣,c=(﹣)﹣2=9,d=(﹣)0=1.故b<a<d<c.故选B.【点睛】本题考查了幂运算法则,准确计算是解题的关键.二、填空题(每小题3分,共24分)11、三角形的三个内角都小于60°【解析】

熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.12、1.【解析】

由平行四边形的性质可知:AD∥BC,推出∠AEB=∠EBC,求出∠EBC即可;【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知,BE平分∠ABC,∴∠EBC=∠ABC=1°,∴∠AEB=∠EBC=1°,故答案为1.【点睛】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13、八(或8)【解析】分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为,正多边形的每一个外角为:多边形的边数为:故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.14、4cm【解析】

在▱ABCD中∵BC=AD=6cm,AO=CO,∵AC⊥BC,∴∠ACB=90°,∴AC==8cm,∴AO=AC=4cm;故答案为4cm.15、y=2x+1【解析】

根据直线平移k值不变,只有b发生改变进行解答即可.【详解】由题意得:平移后的解析式为:y=2x-1+4,y=2x+1,故填:y=2x+1.【点睛】本题考查了一次函数图象与几何变换,在解题时,紧紧抓住直线平移后k值不变这一性质即可.16、19【解析】

先根据非负数的性质求得x、y的值,然后再根据等腰三角形的性质以及三角形三边关系进行讨论即可得.【详解】根据题意得,x-3=0,y-8=0,解得x=3,y=8,①3是腰长时,三角形的三边分别为3、3、8,∵3+3<8,∴不能组成三角形,②3是底边时,三角形的三边分别为3、8、8,能组成三角形,周长=3+8+8=19,所以,三角形的周长为19,故答案为:19.【点睛】本题了非负数的性质,等腰三角形的性质,三角形三边的关系,涉及了绝对值的非负性,二次根式的非负性,等腰三角形的性质等,求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.17、【解析】试题解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1.

故答案为x>1.18、【解析】试题分析:首先设点P的坐标为(x,y),根据矩形的周长可得:2(x+y)=10,则y=-x+5,即该直线的函数解析式为y=-x+5.三、解答题(共66分)19、y=2x+1【解析】

设一次函数的解析式为y=kx+b,然后将A、B两点代入解析式列式计算即可.【详解】解:设一次函数的解析式为y=kx+b,因为一次函数的图象经过A(﹣2,﹣3),B(1,3)两点所以,解得:k=2,b=1.∴函数的解析式为:y=2x+1.【点睛】本题考查的是待定系数法求解一次函数解析式,能够掌握待定系数法求解解析式的方法是解题的关键.20、(1)见解析;(2)蚂蚁爬过的路程11.3.【解析】

(1)连接,根据切线的性质得到,证明,根据平行线的性质证明;(2)根据圆周角定理得到,根据勾股定理、弧长公式计算即可.【详解】解:(1)连接,直线与相切,,点是的中点,,,,,,;(2)解:,,由圆周角定理得,,,,,蚂蚁爬过的路程.【点睛】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长公式是解题的关键.21、6.1【解析】

先由勾股定理求得AC的长度,再根据勾股定理的逆定理判定△ADC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:在Rt△ABC中,∠B=90°,∵AB=3,BC=4,∴AC==1,∵CD=12,AD=13,∵AC2+CD2=12+122=169,AD2=169,∴AC2+CD2=AD2,∴∠C=90°,∴△ACD是直角三角形,∵点E是AD的中点,∴CE=AD=×13=6.1.故答案为6.1.【点睛】本题考查的是勾股定理,勾股定理的逆定理及直角三角形的性质,能根据勾股定理的逆定理判断出△ADC是直角三角形是解答此题的关键.22、(1)购买1块电子白板需要15000元,一台笔记本电脑需要4000元(2)有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块.(3)当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元【解析】

(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得等量关系:①买1块电子白板的钱=买3台笔记本电脑的钱+3000元,②购买4块电子白板的费用+5台笔记本电脑的费用=80000元,由等量关系可得方程组,解方程组可得答案.(2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得不等关系:①购买笔记本电脑的台数≤购买电子白板数量的3倍;②电子白板和笔记本电脑总费用≤2700000元,根据不等关系可得不等式组,解不等式组,求出整数解即可.(3)由于电子白板贵,故少买电子白板,多买电脑,根据(2)中的方案确定买的电脑数与电子白板数,再算出总费用.【详解】(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得:,解得:.答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元.(2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得:,解得:.∵a为整数,∴a=99,100,101,则电脑依次买:297,296,295.∴该校有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块.(3)设购买笔记本电脑数为z台,购买笔记本电脑和电子白板的总费用为W元,则W=4000z+15000(396﹣z)=﹣11000z+5940000,∵W随z的增大而减小,∴当z=297时,W有最小值=2673000(元)∴当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元.23、(1)960;当慢车行驶6h时,快车到达乙地;80km/h;160km/h;(2)线段BC所表示的y与x之间的函数关系式为y=240x-960,自变量x的取值范围是4≤x≤6;(3)第二列快车出发1.5h,与慢车相距200km.【解析】

(1)x=0时两车之间的距离即为两地间的距离,根据横坐标和两车之间的距离增加变慢解答,分别利用速度=路程÷时间列式计算即可得解;

(2)求出相遇的时间得到点B的坐标,再求出两车间的距离,得到点C的坐标,然后设线段BC的解析式为y=kx+b,利用待定系数法求一次函数解析式解答;

(3)设第二列快车出发a小时两车相距200km,然后分相遇前与相遇后相距200km两种情况列出方程求解即可.【详解】解:(1)由图象可知,甲、乙两地间的距离是960km;图中点C的实际意义是:当慢车行驶6h时,快车到达乙地;慢车速度是:960÷12=80km/h,快车速度是:960÷6=160km/h;故答案为:960;当慢车行驶6h时,快车到达乙地;80km/h;160km/h;(2)根据题意,两车行驶960km相遇,所用时间=4h,所以,B点的坐标为(4,0),2小时两车相距2×(160+80)=480km,所以,点C的坐标为(6,480),设线段BC的解析式为y=kx+b,则,解得k=240,b=-960,所以,线段BC所表示的y与x之间的函数关系式为y=240x-960,自变量x的取值范围是4≤x≤6;(3)设第二列快车出发a小时两车相距200km,分两种情况,①若是第二列快车还没追上慢车,相遇前,则4×80+80a-160a=200,解得a=1.5,②若是第二列快车追上慢车以后再超过慢车,则160a-(4×80+80a)=200,解得a=6.5,∵快车到达甲地仅需要6小时,∴a=6.5不符合题意,舍去,综上所述,第二列快车出发1.5h,与慢车相距200km.【点睛】本题考查了一次函数的应用,待定系数法求一次函数解析式,相遇问题,追击问题,综合性较强,(3)要注意分情况讨论并考虑快车到达甲地的时间是6h,这也是本题容易出错的地方.24、(1)见解析;(2)成立,理由见解析;(3)∠AEF=90°不发生变化.理由见解析.【解析】

(1)在AB上取点G,使得BG=BE,连接EG,根据已知条件利用ASA判定△AGE≌△ECF,因为全等三角形的对应边相等,所以AE=EF;(2)在BA的延长线上取一点G,使AG=CE,连接EG,根据已知利用ASA判定△AGE≌△ECF,因为全等三角形的对应边相等,所以AE=EF;(3)在BA边取一点G,使BG=BE,连接EG.作AP⊥EG,EQ⊥FC,先证AGP≌△ECQ得AP=EQ,再证Rt△AEP≌Rt△EFQ得∠AEP=∠EFQ,∠BAE=∠CEF,结合∠AEB+∠BAE=90°知∠AEB+∠CEF=90°,从而得出答案.【详解】(1)证明:在BA边取一点G,使BG=BE,连接EG,∵四边形ABCD是正方形,∴∠B=90°,BA=BC,∠DCM═90°,∴BA-BG=BC-BE,即

AG=CE.∵∠AEF=90°,∠B=90°,∴∠AEB+∠CEF=90°,∠AEB+∠BAE=90°,∴∠CEF=∠BAE.∵BG=BE,CF平分∠DCM,∴∠BGE=∠FCM=45°,∴∠AGE=∠ECF=135°,∴△AGE≌△ECF(ASA),∴AE=EF.(2)成立,理由:在BA的延长线上取点G,使得AG=CE,连接EG.∵四边形ABCD为正方形,AG=CE,∴∠B=90°,BG=BE,∴△BEG为等腰直角三角形,∴∠G=45°,又∵CF为正方形的外角平分线,∴∠ECF=45°,∴∠G=∠ECF=45°,∵∠AEF=90°,∴∠FEM=90°-∠AEB,又∵∠BAE=90°-∠AEB,∴∠FEM=∠BAE,∴∠GAE=∠CEF,在△AGE和△ECF中,∵,∴△AGE≌△ECF(ASA),∴AE=EF.故答案为:成立.(3)∠AEF=90°不发生变化.理由如下:在BA边取一点G,使BG=BE,连接EG.分别过点A、E作AP⊥EG,EQ⊥FC,垂足分别为点P、Q,∴∠APG=∠EQC=90°,由(1)中知,AG=CE,∠AGE=∠ECF=135°,∴∠AGP=∠ECQ=45°,∴△AGP≌△ECQ(AAS),∴AP=EQ,∴Rt△AEP≌Rt△EFQ(HL),∴∠AEP=∠EFQ,∴∠BAE=∠CEF,又∵∠AEB+∠BAE=90°,∴∠AEB+∠CEF=90°,∴∠AEF=90°.【点睛】此题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用全等三角形的判定定理和性质定理是解题的关键,解答时,注意类比思想的正确

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论