版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省嵊州市谷来镇中学2024年八年级数学第二学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,菱形ABCD中,对角线AC等于,∠D=120°,则菱形ABCD的面积为()A. B.54 C.36 D.2.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有()A.1个 B.2个 C.3个 D.4个3.一元一次不等式组的解集为x>a,且a≠b,则a与b的关系是()A.a>b B.a<b C.a>b>0 D.a<b<04.如图,在矩形中,边的长为,点分别在上,连结,若四边形是菱形,且,则边的长为()A. B. C. D.5.若m<n,则下列结论正确的是()A.2m>2n B.m﹣4<n﹣4 C.3+m>3+n D.﹣m<﹣n6.已知反比例函数y=-,下列结论中不正确的是()A.图象经过点(3,-2) B.图象在第二、四象限C.当x>0时,y随着x的增大而增大 D.当x<0时,y随着x的增大而减小7.如果一次函数y=kx+不经过第三象限,那么k的取值范围是()A.k<0 B.k>0 C.k≤0 D.k≥08.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.9.下列各点中,不在函数的图象上的点是()A.(3,4) B.(﹣2,﹣6) C.(﹣2,6) D.(﹣3,﹣4)10.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1) B.y随x的增大而增大C.图象经过第一、二、三象限 D.当x>时,y<011.如图,在中,,,,将△ABC沿直线BC向右平移得到△DEF,连接AD,若AD=2,则点C到DF的距离为()A.1 B.2 C.2.5 D.412.已知甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是30岁,这三个团游客年龄的方差分别是=1.4,=11.1.=25,导游小芳喜欢带游客年龄相近的团队,若要在这三个团中选择一个,则她应选()A.甲 B.乙 C.丙 D.都可以二、填空题(每题4分,共24分)13.如图,在中,,,点D在边上,若以、为边,以为对角线,作,则对角线的最小值为_______.14.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_____cm.15.如图,在平行四边形ABCD中,AB=10,BC=6,AC⊥BC,则平行四边形ABCD的面积为___________.16.某工厂原计划在规定时间内生产12000个零件,实际每天比原计划多生产100个零件,结果比规定时间节省了.若设原计划每天生产x个零件,则根据题意可列方程为_____.17.已知,化简________18.实数a、b在数轴上的位置如图所示,化简=_____.三、解答题(共78分)19.(8分)如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.(1)求证:DP=CG;(2)判断△PQR的形状,请说明理由.20.(8分)四边形ABCD是正方形,AC是对角线,E是平面内一点,且,过点C作,且.连接AE、AF,M是AF的中点,作射线DM交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①;②;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求与的和的度数.21.(8分)如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,C在y轴上,反比例函数的图象分别交BC,AB于E,F,已知,.(1)求k的值;(2)若,求点E的坐标.22.(10分)如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.23.(10分)梯形中,,,,,、在上,平分,平分,、分别为、的中点,和分别与交于和,和交于点.(1)求证:;(2)当点在四边形内部时,设,,求关于的函数关系式,并写出自变量的取值范围;(3)当时,求的长.24.(10分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于x轴对称的△A1B1C1;(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1.25.(12分)计算:.26.关于x的方程ax2+bx+c=0(a0).(1)已知a,c异号,试说明此方程根的情况.(2)若该方程的根是x1=-1,x2=3,试求方程a(x+2)2+bx+2b+c=0的根.
参考答案一、选择题(每题4分,共48分)1、D【解析】
如图,连接BD交AC于点O,根据菱形的性质和等腰三角形的性质可得AO的长、BO=DO、AC⊥BD、∠DAC=30°,然后利用30°角的直角三角形的性质和勾股定理可求出OD的长,即得BD的长,再根据菱形的面积=对角线乘积的一半计算即可.【详解】解:如图,连接BD交AC于点O,∵四边形ABCD是菱形,∴AD=CD,AO=CO=,BO=DO,AC⊥BD,∵∠ADC=120°,∴∠DAC=∠ACD=30°,∴AD=2DO,设DO=x,则AD=2x,在直角△ADO中,根据勾股定理,得,解得:x=3,(负值已舍去)∴BD=6,∴菱形ABCD的面积=.故选:D.【点睛】本题考查了菱形的性质、等腰三角形的性质、勾股定理和30°角的直角三角形的性质等知识,属于常见题型,熟练掌握上述基本知识是解题的关键.2、B【解析】由题意得:y=3a,此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,故选B.3、A【解析】
根据不等式组解集的“同大取较大”的原则,a≥b,由已知得a>b.【详解】解:∵的解集为x>a,且a≠b,∴a>b.故选:A.【点睛】本题考查了不等式组解集的四种情况:①同大取较大,②同小取较小,③小大大小中间找,④大大小小解不了.4、C【解析】
根据菱形的性质得出,,,再根据矩形的性质以及全等三角形的性质得出,,继而推出答案.【详解】解:四边形为菱形,,四边形为矩形又.故选:C.【点睛】本题考查的知识点有菱形的性质、矩形的性质、全等三角形的判定及性质、含30度角的直角三角形的性质,利用已知条件推出是解此题的关键.5、B【解析】
根据不等式的性质逐个判断即可.【详解】解:A、∵m<n,∴2m<2n,故本选项不符合题意;B、∵m<n,∴m﹣4<n﹣4,故本选项符合题意;C、∵m<n,∴3+m<3+n,故本选项不符合题意;D、∵m<n,∴﹣m>﹣n,故本选项不符合题意;故选:B.【点睛】此题主要考查不等式的性质,解题的关键是熟知不等式的性质辨别方法.6、D【解析】
利用反比例函数图象上点的坐标特征对A进行判断;根据反比例函数的性质对B、C、D进行判断.【详解】解:A、当x=3时,y=-=-2,所以点(3,-2)在函数y=-的图象上,所以A选项的结论正确;B、反比例函数y=-分布在第二、四象限,所以B选项的结论正确;C、当x>0时,y随着x的增大而增大,所以C选项的结论正确;D、当x<0时,y随着x的增大而增大,所以D选项的结论不正确.故选:D.【点睛】本题考查了反比例函数的性质:反比例函数y=-(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.7、A【解析】
根据一次函数y=kx+b的图象与k、b之间的关系,即可得出k的取值范围.【详解】∵一次函数y=kx+的图象不经过第三象限,∴一次函数y=kx+的图象经过第一、二、四象限,∴k<1.故选:A.【点睛】本题考查了一次函数的图象与系数k,b的关系,熟练掌握一次函数的图象的性质是解题的关键.8、B【解析】
首先根据把一个图形沿着一条直线对折后两部分完全重合,这样的图形叫轴对称图形,分别找出各选项所给图形中是轴对称图形的选项,进而排除不是轴对称图形的选项;然后再分析得到的是轴对称图形的选项,根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,找出它们当中是中心对称图形的选项即可【详解】A是中心对称图形,不是轴对称图形,不符合题意B.既是中心对称图形又是轴对称图形,符合题意;C.既不是中心对称图形,也不是轴对称图形,不符合题意D是轴对称图形,不是中心对称图形,不符合题意故选B【点睛】此题主要考查中心对称图形和轴对称图形,根据定义对各选项进行分析判断是解决问题的关键;9、C【解析】
将各选项的点逐一代入进行计算判断即可.【详解】A、当x=3时,y==4,
故(3,4)在函数图象上,正确,不符合题意;B、当x=-2时,y==-6,
故(-2,-6)在函数图象上,正确,不符合题意;C、当x=-2时,y==-6≠6,
故(-2,6)不在函数图象上,错误,符合题意;D、当x=-3时,y==-4,
故(-3,-4)在函数图象上,正确,不符合题意;故答案为:C.【点睛】本题考查反比例函数的图象,属于简单题,要注意计算细心.10、D【解析】根据一次函数的性质,依次分析选项可得答案.解:根据一次函数的性质,依次分析可得,A、x=-2时,y=-2×-2+1=5,故图象必经过(-2,5),故错误,B、k<0,则y随x的增大而减小,故错误,C、k=-2<0,b=1>0,则图象经过第一、二、四象限,故错误,D、当x>时,y<0,正确;故选D.点评:本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系11、A【解析】
作CG⊥DF于点G,由平移的性质可得AD=CF=2,∠ACB=∠F=30°,再由30°直角三角形的性质即可求得CF的值.【详解】如图,作CG⊥DF于点G,由平移知,AD=CF=2,∠ACB=∠F=30°,∴CG=CF=1,即点C到DF的距离为1.故选A.【点睛】本题考查了平移的性质及30°直角三角形的性质,正确作出辅助线,熟练利用平移的性质及30°直角三角形的性质是解决问题的关键.12、A【解析】分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.详解:∵S甲2=1.4,S乙2=11.1,S丙2=25,∴S甲2<S乙2<S丙2,∴游客年龄最相近的团队是甲.故选A.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(每题4分,共24分)13、1【解析】
由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值,由三角形中位线定理求出OD,即可得出DE的最小值.【详解】解:∵,,根据勾股定理得,∵四边形是平行四边形,,∴当取最小值时,线段最短,即时最短,是的中位线,,,故答案为:1.【点睛】本题考查了平行四边形的性质,勾股定理以及垂线段最短,此题难度适中,注意掌握数形结合思想的应用.14、1【解析】试题解析:连接EF,∵OD=OC,∵OE⊥OF∴∠EOD+∠FOD=90°∵正方形ABCD∴∠COF+∠DOF=90°∴∠EOD=∠FOC而∠ODE=∠OCF=41°∴△OFC≌△OED,∴OE=OF,CF=DE=3cm,则AE=DF=4,根据勾股定理得到EF==1cm.故答案为1.15、48【解析】
在Rt△ACB中,AB=10,BC=6,由勾股定理可得,AC=8,再根据平行四边形的面积公式即可求解.【详解】∵AC⊥BC,∴∠ACB=90°,在Rt△ACB中,AB=10,BC=6,由勾股定理可得,AC=8,∴平行四边形ABCD的面积为:BC×AC=6×8=48.故答案为:48.【点睛】本题考查了勾股定理及平行四边形的性质,利用勾股定理求得AC=8是解决问题的关键.16、-【解析】
设原计划每天生产x个零件,则根据时间差关系可列出方程.【详解】设原计划每天生产x个零件,根据结果比规定时间节省了.可得-故答案为:-【点睛】理解工作问题,从时间关系列出方程.17、【解析】
根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.【详解】∵a<0<b,∴|a−b|=b−a.故答案为:.【点睛】本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.18、-b【解析】
根据数轴判断出、的正负情况,然后根据绝对值的性质以及二次根式的性质解答即可.【详解】由图可知,,,所以,,.故答案为-b【点睛】本题考查了实数与数轴,绝对值的性质以及二次根式的性质,根据数轴判断出、的正负情况是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2)△PQR为等腰三角形,理由见解析.【解析】
(1)正方形对角线AC是对角的角平分线,可以证明△ADP≌△DCG,即可求证DP=CG.(2)由(1)的结论可以证明△CEQ≌△CEG,进而证明∠PQR=∠QPR.故△PQR为等腰三角形.【详解】(1)证明:在正方形ABCD中,AD=CD,∠ADP=∠DCG=90°,∠CDG+∠ADH=90°,∵DH⊥AP,∴∠DAH+∠ADH=90°,∴∠CDG=∠DAH,∴△ADP≌△DCG,∵DP,CG为全等三角形的对应边,∴DP=CG.(2)△PQR为等腰三角形.∵∠QPR=∠DPA,∠PQR=∠CQE,CQ=DP,由(1)的结论可知∴CQ=CG,∵∠QCE=∠GCE,CE=CE,∴△CEQ≌△CEG,即∠CQE=∠CGE,∴∠PQR=∠CGE,∵∠QPR=∠DPA,∴∠PQR=∠QPR,所以△PQR为等腰三角形.20、(1)①见解析;②见解析;(2)【解析】
(1)根据已知及正方形的性质,全等三角形的判定,全等三角形的性质的计算,可知①∠BAE=∠DAF是否成立;可知②DN⊥AE是否成立;(2)根据已知及正方形的性质,全等三角形的判定,全等三角形的性质的计算,求出∠EAC与∠ADN的和的度数.【详解】(1)证明:①在正方形ABCD中,∴,.∵,∴.∴.∴.②∵M是AF的中点,∴,由①可知.∵.∵∴∴(2)解:延长AD至H,使得,连结FH,CH.∵,∴.在正方形ABCD屮,AC是对角线,∴.∴.∴.∴又∵,∴.∴∵M是AF的中点,D是AH的中点,∴.∴∴【点睛】本题主要考查了正方形的性质,全等三角形的判定,全等三角形的性质的应用,解题的关键是熟练掌握正方形的性质,全等三角形的判定,全等三角形的性质的计算.21、(1)6;(2).【解析】
(1),,的坐标为,点F在反比例函数的图象上,,即k的值为6;设、,则,.由,得,可求E的坐标.【详解】解:,,的坐标为,点F在反比例函数的图象上,,即k的值为6;设、,的坐标为,,.,,解得或舍去.,.【点睛】本题考核知识点:反比例函数性质.解题关键点:熟记反比例性质.22、(1)t=3,ABQP是矩形;(2)t=,AQCP是菱形;(3)周长为:15cm,面积为:(cm2).【解析】
(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;
(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;
(3)菱形的四条边相等,则菱形的周长=4AQ,面积=CQ×AB.【详解】解:(1)由已知可得,BQ=DP=t,AP=CQ=6-t
在矩形ABCD中,∠B=90°,AD∥BC,
当BQ=AP时,四边形ABQP为矩形,
∴t=6-t,得t=3
故当t=3s时,四边形ABQP为矩形.
(2)AD∥BC,AP=CQ=6-t,∴四边形AQCP为平行四边形
∴当AQ=CQ时,四边形AQCP为菱形
即=6−t时,四边形AQCP为菱形,解得t=,
故当t=s时,四边形AQCP为菱形.
(3)当t=时,AQ=,CQ=,
则周长为:4AQ=4×=15cm
面积为:CQ•AB=×3=.【点睛】本题考查菱形、矩形的判定与性质.注意结合方程的思想解题.23、(1)证明见解析;(2);(3)3或.【解析】
(1)由中位线的性质,角平分线的定义和平行线的性质得出,易证,则结论可证;(2)过作交于点K,过点D作交于点,则得到矩形,则有,,然后利用(1)中的结论有,,在中,利用含30°的直角三角形的性质可得出QC,DQ的长度,然后在中利用勾股定理即可找到y关于x的函数关系式;(3)分两种情况:点在梯形内部和点在梯形内部,当点在梯形内部
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业高级顾问聘任协议范例版B版
- 2025年江西货运从业资格试题答案大全
- 建筑工程铝扣板施工合同
- 智能城市交通网络部署合同
- 会计师事务所公关部聘用合同
- 2025年正规商品代销合同书范文
- 港口物流船运租赁合同
- 食品公司品控员招聘合同模板
- 河北省张家口市2024届高三上学期期末考试数学试题(解析版)
- 图书馆建设拆迁施工合同
- 微观经济学(山东联盟-山东财经大学)智慧树知到期末考试答案2024年
- 数据可视化技术智慧树知到期末考试答案2024年
- MOOC 警察礼仪-江苏警官学院 中国大学慕课答案
- 三基考试题库与答案
- 2024年广东省2024届高三二模英语试卷(含标准答案)
- 全飞秒激光近视手术
- 2024年制鞋工专业知识考试(重点)题库(含答案)
- 2023-2024学年广州大附属中学中考一模物理试题含解析
- 绿化养护工作日记录表
- 2024美的在线测评题库答案
- 2024版高考数学二轮复习:解析几何问题的方法技巧
评论
0/150
提交评论