2024届广西柳州市融水中学高三第三次模拟考试数学试卷含解析_第1页
2024届广西柳州市融水中学高三第三次模拟考试数学试卷含解析_第2页
2024届广西柳州市融水中学高三第三次模拟考试数学试卷含解析_第3页
2024届广西柳州市融水中学高三第三次模拟考试数学试卷含解析_第4页
2024届广西柳州市融水中学高三第三次模拟考试数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西柳州市融水中学高三第三次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的部分图像大致为()A. B.C. D.2.已知集合,则全集则下列结论正确的是()A. B. C. D.3.若直线经过抛物线的焦点,则()A. B. C.2 D.4.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.π B.π C.π D.2π5.已知定义在R上的偶函数满足,当时,,函数(),则函数与函数的图象的所有交点的横坐标之和为()A.2 B.4 C.5 D.66.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.27.是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则()A. B. C. D.8.在棱长为2的正方体ABCD−A1B1C1D1中,P为A1D1的中点,若三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为()A.12 B. C. D.109.要得到函数的图象,只需将函数的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度10.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①② B.①③ C.②③ D.①②③11.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()A.3 B.4 C.5 D.612.若双曲线的离心率为,则双曲线的焦距为()A. B. C.6 D.8二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为__________.14.函数在处的切线方程是____________.15.已知数列是等比数列,,则__________.16.已知集合,则____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.18.(12分)已知,且满足,证明:.19.(12分)在平面直角坐标系中,已知椭圆的中心为坐标原点焦点在轴上,右顶点到右焦点的距离与它到右准线的距离之比为.(1)求椭圆的标准方程;(2)若是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点.求证:直线过定点并求出点的坐标;(3)在(2)的条件下,过点的直线交椭圆于两点,求的取值范围.20.(12分)已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆的方程;(2)已知定点,是否存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.21.(12分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是.(Ⅰ)求椭圆的标准方程;(Ⅱ)过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.22.(10分)在三角形中,角,,的对边分别为,,,若.(Ⅰ)求角;(Ⅱ)若,,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.【详解】解:因为,所以的定义域为,则,∴为偶函数,图象关于轴对称,排除选项,且当时,,排除选项,所以正确.故选:A.【点睛】本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.2、D【解析】

化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【详解】由,则,故,由知,,因此,,,,故选:D【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.3、B【解析】

计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.【点睛】本题考查了抛物线的焦点,属于简单题.4、C【解析】

两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故选C.5、B【解析】

由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4得解.【详解】由偶函数满足,可得的图像关于直线对称且关于轴对称,函数()的图像也关于对称,函数的图像与函数()的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4.故选:B【点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.6、D【解析】

根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.7、B【解析】

设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值.【详解】由题意设四面体的棱长为,设为的中点,以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,,取的三等分点、如图,则,,,,所以、、、、,由题意设,,和都是等边三角形,为的中点,,,,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得,因为的轨迹为一段抛物线且为定值,则也为定值,,可得,此时,则,.故选:B.【点睛】考查线面所成的角的求法,及正切值为定值时的情况,属于中等题.8、C【解析】

取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,此直三棱柱和三棱锥P−ABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径【详解】如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4πR2=,故选:C.【点睛】此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.9、D【解析】

先将化为,根据函数图像的平移原则,即可得出结果.【详解】因为,所以只需将的图象向右平移个单位.【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.10、D【解析】

对于①,利用抛物线的定义,利用可判断;对于②,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于③,将代入抛物线的方程可得,,从而,,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以①正确.由题意可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所以.则直线与直线的斜率乘积为.所以②正确.将代入抛物线的方程可得,,从而,.根据抛物线的对称性可知,,两点关于轴对称,所以过点,,的圆的圆心在轴上.由上,有,,则.所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以.于是,,代入,,得,所以.所以③正确.故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.11、B【解析】

通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“∧”“∨”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次数为4次.故选:B.【点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.12、A【解析】

依题意可得,再根据离心率求出,即可求出,从而得解;【详解】解:∵双曲线的离心率为,所以,∴,∴,双曲线的焦距为.故选:A【点睛】本题考查双曲线的简单几何性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设,,,根据勾股定理得出,而由椭圆的定义得出的周长为,有,便可求出和的关系,即可求得椭圆的离心率.【详解】解:由已知,的三边长,,成等差数列,设,,,而,根据勾股定理有:,解得:,由椭圆定义知:的周长为,有,,在直角中,由勾股定理,,即:,∴离心率.故答案为:.【点睛】本题考查椭圆的离心率以及椭圆的定义的应用,考查计算能力.14、【解析】

求出和的值,利用点斜式可得出所求切线的方程.【详解】,则,,.因此,函数在处的切线方程是,即.故答案为:.【点睛】本题考查利用导数求函数的切线方程,考查计算能力,属于基础题.15、【解析】

根据等比数列通项公式,首先求得,然后求得.【详解】设的公比为,由,得,故.故答案为:【点睛】本小题主要考查等比数列通项公式的基本量计算,属于基础题.16、【解析】

根据并集的定义计算即可.【详解】由集合的并集,知.故答案为:【点睛】本题考查集合的并集运算,属于容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)单调递减区间为,单调递增区间为,的极小值为,无极大值;(3)见解析.【解析】

(1)切点既在切线上又在曲线上得一方程,再根据斜率等于该点的导数再列一方程,解方程组即可;(2)先对求导数,根据导数判断和求解即可.(3)把证明转化为证明,然后证明极小值大于极大值即可.【详解】解:(1)函数的定义域为由已知得,则,解得.(2)由题意得,则.当时,,所以单调递减,当时,,所以单调递增,所以,单调递减区间为,单调递增区间为,的极小值为,无极大值.(3)要证成立,只需证成立.令,则,当时,单调递增,当时,单调递减,所以的极大值为,即由(2)知,时,,且的最小值点与的最大值点不同,所以,即.所以,.【点睛】知识方面,考查建立方程组求未知数,利用导数求函数的单调区间和极值以及不等式的证明;能力方面,考查推理论证能力、分析问题和解决问题的能力以及运算求解能力;试题难度大.18、证明见解析【解析】

将化简可得,由柯西不等式可得证明.【详解】解:因为,,所以,又,所以,当且仅当时取等号.【点睛】本题主要考查柯西不等式的应用,相对不难,注意已知条件的化简及柯西不等式的灵活运用.19、(1);(2)证明详见解析,;(3).【解析】

(1)根据题意列出关于的等式求解即可.(2)先根据对称性,直线过的定点一定在轴上,再设直线的方程为,联立直线与椭圆的方程,进而求得的方程,并代入,化简分析即可.(3)先分析过点的直线斜率不存在时的值,再分析存在时,设直线的方程为,联立直线与椭圆的方程,得出韦达定理再代入求解出关于的解析式,再求解范围即可.【详解】解:设椭圆的标准方程焦距为,由题意得,由,可得则,所以椭圆的标准方程为;证明:根据对称性,直线过的定点一定在轴上,由题意可知直线的斜率存在,设直线的方程为,联立,消去得到,设点,则.所以,所以的方程为,令得,将,代入上式并整理,,整理得,所以,直线与轴相交于定点.当过点的直线的斜率不存在时,直线的方程为,此时,当过点的直线斜率存在时,设直线的方程为,且在椭圆上,联立方程组,消去,整理得,则.所以所以,所以,由得,综上可得,的取值范围是.【点睛】本题主要考查了椭圆的基本量求解以及定值和范围的问题,需要分析直线的斜率是否存在的情况,再联立直线与椭圆的方程,根据韦达定理以及所求的解析式,结合参数的范围进行求解.属于难题.20、(1);(2)存在,且方程为或.【解析】

(1)依题意列出关于a,b,c的方程组,求得a,b,进而可得到椭圆方程;(2)联立直线和椭圆得到,要使以为直径的圆过椭圆的左顶点,则,结合韦达定理可得到参数值.【详解】(1)直线的一般方程为.依题意,解得,故椭圆的方程式为.(2)假若存在这样的直线,当斜率不存在时,以为直径的圆显然不经过椭圆的左顶点,所以可设直线的斜率为,则直线的方程为.由,得.由,得.记,的坐标分别为,,则,,而.要使以为直径的圆过椭圆的左顶点,则,即,所以,整理解得或,所以存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点,直线的方程为或.【点睛】本题主要考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论