湖北省孝感市孝南区部分学校2024届八年级下册数学期末学业质量监测试题含解析_第1页
湖北省孝感市孝南区部分学校2024届八年级下册数学期末学业质量监测试题含解析_第2页
湖北省孝感市孝南区部分学校2024届八年级下册数学期末学业质量监测试题含解析_第3页
湖北省孝感市孝南区部分学校2024届八年级下册数学期末学业质量监测试题含解析_第4页
湖北省孝感市孝南区部分学校2024届八年级下册数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省孝感市孝南区部分学校2024届八年级下册数学期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列各点中,在函数y=2x-5图象上的点是()A.(0,0) B.(,-4) C.(3,-1) D.(-5,0)2.下列式子因式分解正确的是()A.x2+2x+2=(x+1)2+1 B.(2x+4)2=4x2+16x+16C.x2﹣x+6=(x+3)(x﹣2) D.x2﹣1=(x+1)(x﹣1)3.当时,一次函数的图象大致是()A. B.C. D.4.若,,是Rt△ABC的三边,且,是斜边上的高,则下列说法中正确的有几个()(1),,能组成三角形(2),,能组成三角形(3),,能组成直角三角形(4),,能组成直角三角形A.1 B.2 C.3 D.45.若将(a、b均为正数)中的字母a、b的值分别扩大为原来的3倍,则分式的值()A.扩大为原来的3倍 B.缩小为原来的C.不变 D.缩小为原来的6.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x< B. C. D.7.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误 B.乙正确,甲错误 C.甲、乙均正确 D.甲、乙均错误8.如图,在平行四边形ABCD中,点E在边DC上,联结AE并延长交BC的延长线于点F,若AD=3CF,那么下列结论中正确的是()A.FC:FB=1:3 B.CE:CD=1:3 C.CE:AB=1:4 D.AE:AF=1:1.9.若是关于,的二元一次方程,则()A., B., C., D.,10.若x-,则x-y的值为()A.2 B.1 C.0 D.-1二、填空题(每小题3分,共24分)11.如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+PD的最小值等于______.12.甲、乙两人面试和笔试的成绩如下表所示:候选人甲乙测试成绩(百分制)面试成绩8692笔试成绩9083某公司认为,招聘公关人员,面试成绩应该比笔试成绩重要,如果面试和笔试的权重分别是6和4,根据两人的平均成绩,这个公司将录取________。13.如图,在中,点D、E分别是AB、AC的中点,连接BE,若,,,则的周长是_________度.14.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为___.15.一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是_____16.如图,平行四边形中,,,点是对角线上一动点,点是边上一动点,连接、,则的最小值是______.17.已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.18.在△ABC中,若∠A,∠B满足|cosA-|+(sinB-)2=0,则∠C=_________.三、解答题(共66分)19.(10分)近年来,越来越多的人们加入到全民健身的热潮中来.“健步走”作为一项行走速度和运动量介于散步和竞走之间的步行运动,因其不易发生运动伤害,不受年龄、时间和场地限制的优点而受到人们的喜爱.随着信息技术的发展,很多手机可以记录人们每天健步走的步数,为大家的健身做好记录.小明的爸爸妈妈都是健步走爱好者,一般情况下,他们每天都会坚持健步走.小明为了给爸爸妈妈颁发4月份的“运动达人”奖章,进行了抽样调查,过程如下,请补充完整.从4月份随机抽取10天,记录爸爸妈妈运动步数(千步)如下:爸爸12101115141314111412妈妈1114152111114151414根据以上信息,整理分析数据如下表所示:平均数中位数众数爸爸12.612.5妈妈1414(1)直接在下面空白处写出表格中,的值;(2)你认为小明会把4月份的“运动达人”奖章颁发给谁,并说明理由.20.(6分)如图,在Rt△ABC中,∠C=90°,AC=16,BC=12,AB的垂直平分线分别交AB、AC于点D、E.求AB、EC的长.21.(6分)如图所示,已知一次函数的图像直线AB经过点(0,6)和点(-2,0).(1)求这个函数的解析式;(2)直线AB与x轴交于点A,与y轴交于点B,求△AOB的面积.22.(8分)计算(1)(+)(﹣)(2)2﹣6+323.(8分)实验中学学生在学习等腰三角形性质“三线合一”时(1)(探究发现)如图1,在△ABC中,若AD平分∠BAC,AD⊥BC时,可以得出AB=AC,D为BC中点,请用所学知识证明此结论.(2)(学以致用)如果Rt△BEF和等腰Rt△ABC有一个公共的顶点B,如图2,若顶点C与顶点F也重合,且∠BFE=∠ACB,试探究线段BE和FD的数量关系,并证明.(3)(拓展应用)如图3,若顶点C与顶点F不重合,但是∠BFE=∠ACB仍然成立,(学以致用)中的结论还成立吗?证明你的结论.24.(8分)如图,等腰△ABC中,已知AC=BC=2,AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.(1)求证:四边形BCFE是平行四边形;(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=________.25.(10分)如图,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x(0<x<1),矩形的面积为S.(1)求S关于x的函数解析式;(2)当EFGH是正方形时,求S的值.26.(10分)解方程(1)(2)(3)

参考答案一、选择题(每小题3分,共30分)1、B【解析】

只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.【详解】解:A、把(0,0)代入y=2x-5得:左边=0,右边=2×(0-1)-5=-5,左边≠右边,故A选项错误;

B、把(,-4)代入y=2x-5得:左边=-4,右边=2×-5=-4,左边=右边,故B选项正确;

C、把(3,-1)代入y=2x-5得:左边=-1,右边=2×3-5=1,左边≠右边,故C选项错误;

D、把(-5,0)代入y=2x-5得:左边=0,右边=2×(-5)-5=-15,左边≠右边,故D选项错误.

故选:B.【点睛】本题主要考查对一次函数图象上点的坐标特征的理解和掌握,能根据点的坐标判断是否在函数的图象上是解此题的关键.2、D【解析】

利用因式分解定义,以及因式分解的方法判断即可.【详解】解:A、x2+2x+2不能进行因式分解,故A错误;B、(2x+4)2=4x2+16x+16不符合因式分解的定义,故B错误;C、,等式左右不相等,故C错误;D、x2﹣1=(x+1)(x﹣1),正确故选:D.【点睛】本题考查了因式分解的概念及判断,掌握因式分解的定义是解题的关键.3、A【解析】

根据k=1>0可得图象的斜率,根据b<0可得直线与y轴的交点在x轴的下方.【详解】解:∵k=1>0,∴y随x的增大而增大,又∵b<0,∴函数图象与y轴交于负半轴.故选A.【点睛】本题主要考查一次函数的图象性质,当=kx+b(k,b为常数,k≠0)时:当k>0,b>0,这时此函数的图象经过一,二,三象限;当k>0,b<0,这时此函数的图象经过一,三,四象限;当k<0,b>0,这时此函数的图象经过一,二,四象限;当k<0,b<0,这时此函数的图象经过二,三,四象限.4、C【解析】

根据勾股定理的逆定理和三角形的三边关系进行逐个分析即可.【详解】(1)a2+b2=c2,根据两边之和得大于第三边,故本项说法错误;(2)∵,,又∵a+b>c,∴,∴,即本项说法正确;(3)因为(c+h)2-h2=c2+2ch,ch=ab(直角三角形面积=两直角边乘积的一半=斜边和斜边上的高乘积的一半)∴2ch=2ab,∴(c+h)2-h2=c2+2ch=a2+b2+2ab=(a+b)2,所以本项说法正确;(4)因为,所以本项说法正确.所以说法正确的有3个.故选:C.【点睛】本题主要考查直角三角形的性质,勾股定理的逆定理,三角形的三边关系,关键在于熟练运用勾股定理的逆定理,认真的进行计算.5、D【解析】

根据分式的基本性质,可得答案【详解】将分式(a,b均为正数)中a,b的值分别扩大为原来的3倍,则分式的值缩小为原来的故选D.【点睛】本题考查分式的基本性质,掌握运算法则是解题关键.6、B【解析】

由三角形三条边的关系得1<x<5,由于该三角形是锐角三角形,再结合勾股定理求出由锐角三角形变为直角三角形的临界值.【详解】首先要能组成三角形,由三角形三条边的关系得1<x<5;下面求该三角形为直角三角形的边长情况(此为临界情况):当3为斜边时,由勾股定理,22+x2=32,解得x=.当x为斜边时,由勾股定理,22+32=x2,解得x=,综上可知,当<x<时,原三角形为锐角三角形.故选B.【点睛】本题考查了三角形三条边的关系和勾股定理,解题的是由勾股定理求出x的临界值,再结合三角形三条边的关系求出x的取值范围.7、C【解析】试题分析:甲的作法正确:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACN.∵MN是AC的垂直平分线,∴AO=CO.在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.∵AC⊥MN,∴四边形ANCM是菱形.乙的作法正确:如图,∵AD∥BC,∴∠1=∠2,∠2=∠1.∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠2.∴∠1=∠3,∠5=∠1.∴AB=AF,AB=BE.∴AF=BE.∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形.∵AB=AF,∴平行四边形ABEF是菱形.故选C.8、C【解析】试题解析:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=DC∴△ADE∽△FCE∴AD:FC=AE:FE=DE:CE∵AD=3FC∴AD:FC=3:1∴FC:FB=1:4,故A错误;∴CE:CD=1:4,故B错误;∴CE:AB=CE:CD=1:4,故C正确;∴AE:AF=3:4,故D错误.故选C.9、D【解析】

根据二元一次方程的定义可知,m、n应满足以下4个关系式:,解之即得.【详解】解:由题意是关于,的二元一次方程,于是m、n应满足,解得,,故选D.【点睛】本题考查了二元一次方程的定义,认真审题并列出m、n应满足的4个关系式是解决此题的关键.10、B【解析】

直接利用二次根式的性质得出y的值,进而得出答案.【详解】解:∵与都有意义,∴y=0,∴x=1,故选x-y=1-0=1.故选:B.【点睛】此题考查二次根式有意义的条件,正确把握二次根式的定义是解题关键.二、填空题(每小题3分,共24分)11、【解析】

过点P作PE⊥AD交AD的延长线于点E,根据四边形ABCD是平行四边形,得到AB∥CD,推出PE=PD,由此得到当PB+PE最小时2PB+PD有最小值,此时P、B、E三点在同一条直线上,利用∠DAB=30°,∠AEP=90°,AB=6求出PB+PE的最小值=AB=3,得到2PB+PD的最小值等于6.【详解】过点P作PE⊥AD交AD的延长线于点E,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDC=∠DAB=30°,∴PE=PD,∵2PB+PD=2(PB+PD)=2(PB+PE),∴当PB+PE最小时2PB+PD有最小值,此时P、B、E三点在同一条直线上,∵∠DAB=30°,∠AEP=90°,AB=6,∴PB+PE的最小值=AB=3,∴2PB+PD的最小值等于6,故答案为:6.【点睛】此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD转化为三点共线的形式是解题的关键.12、乙【解析】

根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.【详解】甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),因为乙的平均分数最高,所以乙将被录取.故答案为乙.【点睛】此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.13、26【解析】

由题意可知,DE为的中位线,依据中位线定理可求出BC的长,因为,故BE=BC,而EC=AE,此题得解.【详解】解:点D、E分别是AB、AC的中点DE为的中位线,又故答案为:26【点睛】本题考查了中位线定理、等角对等边,熟练利用这两点求线段长是解题的关键.14、2【解析】

根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.【详解】解:在Rt△BCE中,由勾股定理得,CE===1.∵BE=DE=3,AE=CE=1,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC×BD=4×(3+3)=2.故答案为2.【点睛】本题考查了平行四边形的判定与性质,关键是利用勾股定理得出CE的长,利用对角线互相平分的四边形是平行四边形,利用平行四边形的面积公式.15、m>【解析】

根据图象的增减性来确定(2m-1)的取值范围,从而求解.【详解】∵一次函数y=(2m-1)x+1,y随x的增大而增大,∴2m-1>1,解得,m>,故答案是:m>.【点睛】本题考查了一次函数的图象与系数的关系.一次函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1.16、【解析】

过点B作BF'⊥CD,交AC于点E',则BE+EF的最小值为BF'的长;在Rt△BCF'中,BC=2,∠BCF'=60°,即可求解.【详解】过点B作BF'⊥CD,交AC于点E',则BE+EF的最小值为BF'的长;∵∠BAD=60°,AD=2,∴在Rt△BCF'中,BC=2,∠BCF'=60°,∴BF'=.故答案为.【点睛】本题考查最短距离问题;利用垂线段最短将BE+EF的最小值转化为垂线段的长是解题的关键.17、x≥1.【解析】试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点:一次函数与一元一次不等式.18、75°【解析】【分析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.【详解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为:75°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值.三、解答题(共66分)19、(1);(2)详见解析.【解析】

(1)根据平均数、众数的定义分别求出a,b的值;(2)根据平均数与中位数的意义说明即可.【详解】解:(1)由题意,可得a=(11+14+15+2+11+11+14+15+14+14)÷10=12.1,10个数据中,14出现了3次,次数最多,所以b=14;∴;(2)答案不唯一,理由须支撑推断结论.例如:我认为小明会把4月份的“运动达人”奖章颁发给爸爸,因为从平均数的角度看,爸爸每天的平均运动步数比妈妈多.我认为小明会把4月份的“运动达人”奖章颁发给妈妈,因为从中位数的角度看,妈妈有超过5天的运动步数达到或超过了14千步,而爸爸没有,妈妈平均步数低于爸爸完全是受一个极端值的影响造成的,考虑到这一极端值很可能是由于某种特殊原因(例如生病等)造成的,可以排除此干扰.【点睛】本题考查了中位数、众数和平均数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫伯这组数据的中位数;一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.20、AB=20,EC=【解析】

根据勾股定理即可求出AB的长;连接BE,根据线段垂直平分线的性质可得AE=BE,然后设CE=x,由勾股定理可得关于x的方程,继而求得答案.【详解】解:在Rt△ABC中,∵∠C=90°,AC=16,BC=12,∴AB==20;连接BE,如图,∵AB的垂直平分线分别交AB、AC于点D、E,∴AE=BE,设EC=x,则BE=AE=16-x,在Rt△EBC中,∵∠C=90°,BC=12,∴,解得:x=,即EC=.【点睛】此题考查了线段垂直平分线的性质以及勾股定理,难度不大,注意掌握数形结合思想与方程思想的应用.21、(1)一次函数的解析式为:y=3x+6;(2)△AOB的面积=×6×2=6.【解析】

(1)设一次函数的解析式为y=kx+b(k≠0),再把点(0,6)和点(-2,0)代入求出k、b的值即可;

(2)求出直线与坐标轴的交点,再利用三角形的面积公式即可得出结论.【详解】(1)设一次函数的解析式为y=kx+b(k≠0),

∵一次函数的图象经过点点(0,6)和点(-2,0),

∴,解得,

∴一次函数的解析式为:y=3x+6;

(2)∵一次函数的解析式为y=3x+6,

∴与坐标轴的交点为(0,6)和(-2,0),

∴△AOB的面积=×6×2=6.【点睛】本题考查待定系数法求一次函数解析式和一次函数图象上点的坐标特征,解题的关键是掌握待定系数法求一次函数解析式.22、(1)2;(2)14【解析】

(1)根据平方差公式可以解答本题;(2)根据二次根式的加减法可以解答本题.【详解】解:(1)=5﹣3=2;(2)==.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.23、(1)见解析;(2)结论:DF=2BE;(3)结论不变:DF=2BE.【解析】

(1)只要证明△ADB≌△ADC(ASA)即可.(2)结论:DF=2BE.如图2中,延长BE交CA的延长线于K.想办法证明△BAK≌△CAD(ASA)即可解决问题.(3)如图3中,结论不变:DF=2BE.作FK∥CA交BE的延长线于K,交AB于J.利用(2)中结论证明即可.【详解】解:(1)如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵DA平分∠BAC,∴∠DAB=∠DAC,∵AD=AD,∴△ADB≌△ADC(ASA),∴AB=AC,BD=DC.(2)结论:DF=2BE.理由:如图2中,延长BE交CA的延长线于K.∵CE平分∠BCK,CE⊥BK,∴由(1)中结论可知:CB=CK,BE=KE,∵∠∠BAK=∠CAD=∠CEK=90°,∴∠ABK+∠K=90°,∠ACE+∠K=90°,∴∠ABK=∠ACD,∵AB=AC,∴△BAK≌△CAD(ASA),CD=BK,∴CD=2BE,即DF=2BE.(3)如图3中,结论不变:DF=2BE.理由:作FK∥CA交BE的延长线于K,交AB于J.∵FK∥AC,∴∠FJB=∠A=90°,∠BFK=∠BCA,∵∠JBF=45°,∴△BJF是等腰直角三角形,∵∠BFE=ACB,∴∠BFE=∠BFJ,由(2)可知:DF=2BE.【点睛】三角形综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题24、(1)见解析;(2)四边形AECF是矩形,理由见解析;(3)秒或5秒或2秒【解析】

(1)已知EF∥BC,结合已知条件利用两组对边分别平行证明BCFE是平行四边形;因为AC=BC,等角对等边,得∠B=∠BAC,CF平分∠ACH,则∠ACF=∠FCH,结合∠ACH=∠B+∠BAC=∠ACF+∠FCH,等量代换得∠FCH=∠B,则同位角相等两直线平行,得BE∥CF,结合EF∥BC,证得四边形BCFE是平行四边形;(2)先证∠AED=90°,再证四边形AECF是平行四边形,则四边形AECF是平行四边形是矩形;

AC=BC,E是AB的中点,由等腰三角形三线合一定理知CE⊥AB,因为四边形BCFE是平行四边形,得CF=BE=AE,AE∥CF,一组对边平行且相等,且有一内角是直角,则四边形AECF是矩形;(3)分三种情况进行①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,则邻边BE=BC,这时根据S=vt=2t=,求出t即可;②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,过C作CD⊥AB于D,AC=BC,三线合一则BD的长可求,在Rt△BDC中运用勾股定理求出CD的长,把ED长用含t的代数式表示出来,现知EG=CF=EC=EB=2t,在Rt△EDC中,利用勾股定理列式即可求出t;③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,则CA=AF=BC,此时E与A重合,则2t=AB=4,求得t值即可.【详解】(1)证明:如图1,∵AC=BC,∴∠B=∠BAC,∵CF平分∠ACH,∴∠ACF=∠FCH,∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,∴∠FCH=∠B,∴BE∥CF,∵EF∥BC,∴四边形BCFE是平行四边形(2)解:四边形AECF是矩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论