




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年湖南省长沙市明德旗舰八年级数学第二学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列各组线段中,能够组成直角三角形的一组是(
)A.1,2,3 B.2,3,4 C.4,5,6 D.1,,2.在△ABC中,若AB=8,BC=15,AC=17,则AC边上的中线BD的长为()A.8 B.8.5 C.9 D.9.53.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.1 C.2 D.34.若方程是一元二次方程,则m的值为()A.0 B.±1 C.1 D.–15.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5 B.a=4,b=5,c=6C.a=6,b=8,c=10 D.a=5,b=12,c=136.一个口袋中装有3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出两个球都是绿球的概率是()A. B. C. D.7.把直线y=-x+1向上平移3个单位长度后得到的直线的解析式为()A. B.C. D.8.已知直角三角形的两条直角边的长分别是1,,则斜边长为()A.1 B. C.2 D.39.直线:为常数的图象如图,化简:A.3 B. C. D.510.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是()A.a2+b2=c2 B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A:∠B:∠C=3:4:5二、填空题(每小题3分,共24分)11.利用因式分解计算:2012-1992=_________;12.若ab<0,化简的结果是____.13.在某次射击训练中,教练员统计了甲、乙两位运动员10次射击成绩,两人的平均成绩都是8.8环,且方差分别是1.8环,1.3环,则射击成绩较稳定的运动员是______(填“甲”或“乙”).14.如果正比例函数y=kx的图象经过点(1,-2),那么k的值等于▲.15.一个正方形的面积为4,则其对角线的长为________.16.如图,在等腰梯形ABCD中,AD∥BC,AB=CD.点P为底边BC的延长线上任意一点,PE⊥AB于E,PF⊥DC于F,BM⊥DC于M.请你探究线段PE、PF、BM之间的数量关系:______.17.如图,将一个智屏手机抽象成一个的矩形,其中,,然后将它围绕顶点逆时针旋转一周,旋转过程中、、、的对应点依次为、、、,则当为直角三角形时,若旋转角为,则的大小为______.18.观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图5中挖去三角形的个数为______三、解答题(共66分)19.(10分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.20.(6分)解方程:21.(6分)在平面直角坐标系xOy中,一次函数的图象经过点A(2,3)与点B(0,5).(1)求此一次函数的表达式;(2)若点P为此一次函数图象上一点,且△POB的面积为10,求点P的坐标.22.(8分)某校为了了解学生的安全意识,在全校范围内随机抽取部分学生进行问卷调查.根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图,如图所示:根据以上信息,解答下列问题:(1)这次调查一共抽取了______名学生,将条形统计图补充完整;(2)扇形统计图中,“较强”层次所占圆心角的大小为______°;(3)若该校有3200名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,请你估计全校需要强化安全教育的学生人数.23.(8分)如图,矩形ABCD中,AB4,BC10,E在AD上,连接BE,CE,过点A作AG//CE,分别交BC,BE于点G,F,连接DG交CE于点H.若AE2,求证:四边形EFGH是矩形.24.(8分)感知:如图,在菱形ABCD中,,点E、F分别在边AB、AD上若,易知≌.探究:如图,在菱形ABCD中,,点E、F分别在BA、AD的延长线上若,与是否全等?如果全等,请证明;如果不全等,请说明理由.拓展:如图,在▱ABCD中,,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上若,,,求的度数.25.(10分)如图,在中,点对角线上,且,连接。求证:(1);(2)四边形是平行四边形。26.(10分)已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:A.,不能组成直角三角形,故错误;B.,不能组成直角三角形,故错误;C.,不能组成直角三角形,故错误;D.,能够组成直角三角形,故正确.故选D.考点:勾股定理的逆定理.2、B【解析】
首先判定△ABC是直角三角形,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】∵82+152=289=172,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,∵BD是AC边上的中线,∴BD=AC=8.5,故选B.【点睛】此题主要考查了勾股定理逆定理,以及直角三角形的性质,关键是正确判定△ABC的形状.3、A【解析】
根据反比例函数的图像与性质解答即可.【详解】∵反比例函数y=的图象位于第二、四象限,∴k<0,∴k的取值可能是-1.故选A.【点睛】本题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内;当k<0,反比例函数图象的两个分支在第二、四象限.4、D【解析】
根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,且二次项系数不等于0,即可进行求解,【详解】因为方程是一元二次方程,所以,,解得且所以,故选D.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.5、B【解析】
根据勾股定理进行判断即可得到答案.【详解】A.∵32+42=52,∴△ABC是直角三角形;B.∵52+42≠62,∴△ABC不是直角三角形;C.∵62+82=102,∴△ABC是直角三角形;D.∵122+42=132,∴△ABC是直角三角形;故选:B.【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理.6、B【解析】
首先根据题意列出表格,然后由表格求得所有等可能的结果与从中摸出两个球都是绿球的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:∵共有20种等可能的结果,从中摸出两个球都是绿球的有6种情况,
∴从中摸出两个球都是绿球的概率是:.故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.7、A【解析】
直接根据“上加下减”的原则进行解答即可.【详解】由“上加下减”的原则可知,把直线y=-x+1向上平移3个单位长度后所得直线的解析式为:y=-x+1+3,即y=-x+1.故选A.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.8、C【解析】
根据勾股定理进行计算,即可求得结果.【详解】解:直角三角形的两条直角边的长分别为1,,则斜边长==2;故选C.【点睛】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.9、C【解析】
先从一次函数的图象判断出的正负,然后再化简原代数式.【详解】由直线为常数的图象可得:,所以,故选:C.【点睛】本题主要考查一次函数的图象,关键是根据二次根式的性质及其化简,绝对值的化简解答.10、D【解析】分析:利用直角三角形的定义和勾股定理的逆定理逐项判断即可.详解:A.a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B.∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;C.52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;D.∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形;故选D.点睛:此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三个内角中有一个是直角的情况下,才能判定三角形是直角三角形.二、填空题(每小题3分,共24分)11、800【解析】分析:先利用平方差公式分解因式,然后计算即可求解.详解:2012-1992=(201+199)(201-199)=800.故答案为800.点睛:本题考查了因式分解在进行有理数的乘法中的运用,涉及的是平方差公式的运用,使运算简便.12、【解析】的被开方数a2b>1,而a2>1,所以b>1.又因为ab<1,所以a、b异号,所以a<1,所以.13、乙【解析】
直接根据方差的意义求解.【详解】∵S甲2=1.8,S乙2=1.3,1.3<1.8,∴射击成绩比较稳定的是乙,故答案为:乙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.14、-2【解析】将(1,-2)代入y=kx得,—2=1×k,解得k=-215、【解析】
已知正方形的面积,可以求出正方形的边长,根据正方形的边长可以求出正方形的对角线长.【详解】如图,∵正方形ABCD面积为4,∴正方形ABCD的边长AB==2,根据勾股定理计算BD=.故答案为:.【点睛】本题考查了正方形面积的计算,考查了勾股定理的运用,计算正方形的边长是解题的关键.16、PE-PF=BM.【解析】
过点B作BH∥CD,交PF的延长线于点H,易证四边形BMFH是平行四边形,于是有FH=BM,再用AAS证明△PBE≌△PBH,可得PH=PE,继而得到结论.【详解】解:PE-PF=BM.理由如下:过点B作BH∥CD,交PF的延长线于点H,如图∴∠PBH=∠DCB,∵PF⊥CD,BM⊥CD,∴BM∥FH,PH⊥BH,∴四边形BMFH是平行四边形,∠H=90°,∴FH=BM,∵等腰梯形ABCD中,AD∥BC,AB=DC,∴∠ABC=∠DCB,∴∠ABC=∠PBH,∵PE⊥AB,∴∠PEB=∠H=90°,又PB为公共边,∴△PBE≌△PBH(AAS),∴PH=PE,∴PE=PF+FH=PF+BM.即PE-PF=BM.【点睛】本题考查了等腰梯形的性质、平行四边形的判定与性质和全等三角形的判定与性质,解题的关键是正确添加辅助线,构造所需的平行四边形和全等三角形.17、或或【解析】
根据题中得到∠ADE=30°,则∠DAE=60°;这是有两种情况,一种AE在AD的左侧,一种AE在AD的右侧;另外,当旋转180°,AE和AB共线时,∠EAD=90°,△ADE也是直角三角形.【详解】解:要使△ADE为直角三角形,由于AE=8,AD=16,即只需满足∠ADE=30°即可.当∠DAE=30°,则∠DAE=60°当AE在AD的右侧时,旋转了30°;当AE在AD的左侧,即和BA的延长线的夹角为30°,即旋转了150°.另外,当旋转到AE和AB延长线重合时,∠DAE=90°,三角形ADE也是直角三角形;所以答案为:或或【点睛】本题考查了旋转和直角三角形的相关知识,其中对旋转过程中出现直角的讨论是解答本题的关键.18、1【解析】
根据题意找出图形的变化规律,根据规律计算即可.【详解】解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图5挖去中间的(1+3+32+33+34)个小三角形,即图5挖去中间的1个小三角形,故答案为1.【点睛】本题考查的是图形的变化,掌握图形的变化规律是解题的关键.三、解答题(共66分)19、【解析】
连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可【详解】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC=,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.【点睛】此题考查勾股定理和勾股定理的逆定理,掌握运算法则是解题关键20、(1);(2),【解析】
(1)直接用因式分解法解方程即可;(2)利用公式法解方程.【详解】解:(1)原方程分解因式得:∴方程的解为:;,【点睛】本题考查的知识点是解一元二次方程,掌握解一元二次方程的不同方法的步骤是解此题的关键.21、(1)y=﹣x+5;(2)(4,1)或(﹣4,9).【解析】
(1)设此一次函数的表达式为y=kx+bk≠0.由点A、B(2)设点P的坐标为a,-a+5.根据三角形的面积公式即可列出关于a的含绝对值符号的一元一次方程,解方程即可得出结论.【详解】解:(1)设一次函数的表达式为y=kx+b,把点A(2,3)和点b=52k+b=3解得:b=5k=-1此一次函数的表达式为:y=-x+5,(2)设点P的坐标为(a,-a+5),∵B(0,5∴OB=5,又∵△POB的面积为10,∴1∴|a|=4,∴a=±4,∴点P的坐标为(4,1)或【点睛】本题考查了待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)利用待定系数法求出函数表达式;(2)找出关于a的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.22、(1)200,t图见解析;(2)108;(3)估计全校需要强化安全教育的学生人数为800人【解析】
(1)用条形统计图中“一般”层次的人数除以扇形统计图中“一般”层次所占百分比即可求出抽取的人数,然后用总人数减去其它三个层次的人数即得“较强”层次的人数,进而可补全条形统计图;(2)用“较强”层次的人数除以总人数再乘以360°即可求出结果;(3)用3200乘以样本中“淡薄”和“一般”层次所占的百分比即可.【详解】解:(1)30÷15%=200,所以这次调查一共抽取了200名学生;较强层次的人数为200-20-30-90=60(人),条形统计图补充为:故答案为:200;(2)扇形统计图中,“较强”层次所占圆心角=360°×=108°;故答案为:108;(3)3200×=800,所以估计全校需要强化安全教育的学生人数为800人.【点睛】本题考查了条形统计图和扇形统计图以及利用样本估计总体的思想,属于常考题型,正确理解题意、读懂统计图提供的信息、弄清二者的联系是解题的关键.23、证明见解析.【解析】
根据四边形ABCD是矩形以及AG//CE,得到四边形AECG是平行四边形,从而得到四边形BEDG是平行四边形,即可得到四边形EFGH是平行四边形,再根据勾股定理求出BE,CE长,由勾股定理的逆定理得到△BEC是直角三角形,即可得正.【详解】∵四边形ABCD是矩形,∴AD//BC,AD=BC=10,∵AG//CE,∴四边形AECG是平行四边形,∴AE=CG=2,∴ED=BG=8,∴四边形BEDG是平行四边形,∴BE//DG,∴四边形EFGH是平行四边形,∵∠BAE=90°,∠ADC=90°,∴BE=AB2∴BE∴△BEC是直角三角形,∴∠CEF=90°,∴四边形EFGH是矩形.【点睛】本题考查了矩形的判定与性质、平行四边形的判定与性质、勾股定理以及勾股定理的逆定理的运用,解题的关键是掌握这些性质.24、探究:和全等,理由见解析;拓展:.【解析】
探究:△ADE和△DBF全等,利用菱形的性质首先证明三角形ABD为等边三角形,再利用全等三角形的判定方法即可证明△ADE≌△DBF;拓展:因为点O在AD的垂直平分线上,所以OA=OD,再通过证明△ADE≌△DBF,利用全等三角形的性质即可求出∠ADE的度数.【详解】探究:和全等.四边形ABCD是菱形,.,.为等边三角形
.
,≌;
拓展:点O在AD的垂直平分线上,
..,,≌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 时尚潮流商场鞋帽区品牌联合营销协议
- 餐饮学员合同协议书
- 铁路周围安全协议书
- 车辆承包保管协议书
- 酒店销售bd协议书
- 香烟饮料转让协议书
- 东营联通5g协议书
- 首钢矿业岗位协议书
- 闲置花卉转让协议书
- 农业灌溉放水员协议书
- 护理实训室文化墙
- 蚕豆病疾病演示课件
- 国家教育部研究生专业目录
- 全国教育科学规划课题申报书:03.《数字教育促进学习型社会与学习型大国建设研究》
- 装饰装修工程重点、难点分析及解决方案
- 山体滑坡应急抢险施工方案
- 保密组织机构及人员职责
- 星巴克VI系统设计分析课件
- 互联网金融时代大学生消费行为影响因素研究
- 食品药品安全监管的问题及对策建议
- 信号检测与估计知到章节答案智慧树2023年哈尔滨工程大学
评论
0/150
提交评论