版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古乌海二十二中学2024届八年级下册数学期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.计算25A.5 B.2 C.1 D.-52.顺次连接矩形四边中点得到的四边形一定是()A.梯形 B.正方形 C.矩形 D.菱形3.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2,∠DAO=30°,则FC的长度为()A.1 B.2C. D.4.现有甲、乙两个合唱队,队员的平均身高都是175cm,方差分别为,,那么两个队中队员的身高较整齐的是()A.甲队 B.乙队 C.两队一样高 D.不能确定5.若分式的值为0,则()A. B. C. D.6.给出下列命题:(1)平行四边形的对角线互相平分;(2)矩形的对角线相等;(3)菱形的对角线互相垂直平分;(4)正方形的对角线相等且互相垂直平分.其中,真命题的个数是()A.2 B.3 C.4 D.17.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()A.120° B.90° C.60° D.30°8.某校举行课间操比赛,甲、乙两个班各选出20名学生参加比赛,两个班参赛学生的平均身高都为1.65m,其方差分别是S甲2=3.8,S乙2=3.4,则参赛学生身高比较整齐的班级是()A.甲班 B.乙班 C.同样整齐 D.无法确定9.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为()A. B. C. D.10.以下列各数为边长,能构成直角三角形的是()A.1,,2 B.,, C.5,11,12 D.9,15,1711.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.212.下列各式正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图所示,矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF的长为_____.14.已知方程ax2+7x﹣2=0的一个根是﹣2,则a的值是_____.15.若次函数y=(a﹣1)x+a﹣8的图象经过第一,三,四象限,且关于y的分式方程有整数解,则满足条件的整数a的值之和为_____.16.使代数式有意义的的取值范围是________.17.菱形的两条对角线长分别为10cm和24cm,则该菱形的面积是_________;18.分解因式:=.三、解答题(共78分)19.(8分)已知矩形,为边上一点,,点从点出发,以每秒个单位的速度沿着边向终点运动,连接,设点运动的时间为秒,则当的值为__________时,是以为腰的等腰三角形.20.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△ABC;(2)请画出△ABC关于原点对称的△ABC;21.(8分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下方,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).(1)求线段CD的长;(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;(3)当点P在线段AD上运动时,求S与t的函数关系式.22.(10分)在△ABC中,AB=AC=10,D为BC边上的中点,BD=6,连接AD.(1)尺规作图:作AC边的中垂线交AD于点P;(保留作图痕迹,不要求写作法和证明)(2)连接CP,求△DPC的周长.23.(10分)如图,点、、、是四边形各边的中点,、是对角线,求证:四边形是平行四边形.24.(10分)先化简,再求值:其中,25.(12分)化简并求值:,其中.26.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上.(1)在图中直接画出O点的位置;(2)若以O点为平面直角坐标系的原点,线段AD所在的直线为y轴,过点O垂直AD的直线为x轴,此时点B的坐标为(﹣2,2),请你在图上建立平面直角坐标系,并回答下面的问题:将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1,并直接写出点B1的坐标.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据二次根式的运算法则即可求出答案.【详解】解:原式=5故选:A.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.2、D【解析】
根据顺次连接矩形的中点,连接矩形的对边上的中点,可得新四边形的对角线是互相垂直的,并且是平行四边形,所以可得新四边形的形状.【详解】根据矩形的中点连接起来首先可得四边是相等的,因此可得四边形为菱形,故选D.【点睛】本题主要考查对角线互相垂直的判定定理,如果四边形的对角线互相垂直,则此四边形为菱形.3、A【解析】
由矩形的性质可得OA=OB=OC=OD=AC=,∠ABC=90°,即可得∠ADO=∠DAO=∠OBC=∠ACB=30°,在Rt△ABC中求得BC=3;在Rt△BOF中,求得BF=2,所以CF=BC-BF=1.【详解】∵四边形ABCD是矩形,AC=2,∴OA=OB=OC=OD=AC=,∠ABC=90°,∴∠ADO=∠DAO=∠OBC=∠ACB=30°,在Rt△ABC中,AC=2,∠ACB=30°,∴BC=3;∵EF⊥BD,∴∠BOF=90°,在Rt△BOF中,OB=,∠OBC=30°,∴BF=2,∴CF=BC-BF=1,故选A.【点睛】本题考查了矩形的性质及解直角三角形,正确求得BC=3、BF=2是解决问题的关键.4、B【解析】
根据方差的意义解答.方差,通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】解:∵>,∴身高较整齐的球队是乙队.故选:B.【点睛】本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5、C【解析】
根据分式值为零的条件是分式的分子等于2,分母不等于2解答即可.【详解】∵分式的值为2,∴|x|-2=2,x+2≠2.∴x=±2,且x≠-2.∴x=2.故选:C.【点睛】本题主要考查的是分式值为零的条件,明确分式值为零时,分式的分子等于2,分母不等于2是解题的关键.6、C【解析】
利用平行四边形的性质、矩形的性质、菱形的性质及正方形的性质分别判断后即可确定正确的选项.【详解】(1)平行四边形的对角线互相平分,正确,是真命题;(2)矩形的对角线相等,正确,是真命题;(3)菱形的对角线互相垂直平分,正确,是真命题;(4)正方形的对角线相等且互相垂直平分,正确,是真命题,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行四边形的性质、矩形的性质、菱形的性质及正方形的性质,属于基础题,难度不大.7、B【解析】
根据直角三角形两锐角互余解答.【详解】由题意得,剩下的三角形是直角三角形,所以,∠1+∠2=90°.故选:B.【点睛】此题考查直角三角形的性质,解题关键在于掌握其性质.8、B【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】S甲2=3.8,S乙2=3.4,∴S甲2>S乙2,∴参赛学生身高比较整齐的班级是乙班,故选:B.【点睛】此题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.9、B【解析】
根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】根据勾股定理,AB=,BC=,AC=,∵AC2+BC2=AB2=26,∴△ABC是直角三角形,∵点D为AB的中点,∴CD=AB=.故选B.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.10、A【解析】
根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.【详解】A、12+()2=22,符合勾股定理的逆定理,能组成直角三角形,故正确;B、()2+()2≠()2,不符合勾股定理的逆定理,不能组成直角三角形,故错误;C、52+112≠122,不符合勾股定理的逆定理,不能组成直角三角形,故错误;D、92+152≠172,不符合勾股定理的逆定理,不能组成直角三角形,故错误.故选:A.【点睛】考查的是勾股定理的逆定理:已知三角形ABC的三边满足:a2+b2=c2时,则三角形ABC是直角三角形.解答时,只需看两较小数的平方和是否等于最大数的平方.11、B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.故选B.12、C【解析】
根据分式的性质,分式的加减,可得答案.【详解】A、c=0时无意义,故A错误;B、分子分母加同一个整式,分式的值发生变化,故B错误;C、分子分母都除以同一个不为零的整式,分式的值不变,故C符合题意;D、,故D错误;故选C.【点睛】本题考查了分式的性质及分式的加减,利用分式的性质及分式的加减是解题关键.二、填空题(每题4分,共24分)13、5cm【解析】
设AF=xcm,则DF=(8﹣x)cm,由折叠的性质可得DF=D′F,在Rt△AD′F中,由勾股定理可得x2=42+(8﹣x)2,解方程求的x的值,即可得AF的长.【详解】设AF=xcm,则DF=(8﹣x)cm,∵矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,∴DF=D′F,在Rt△AD′F中,∵AF2=AD′2+D′F2,∴x2=42+(8﹣x)2,解得:x=5(cm).故答案为:5cm【点睛】本题考查了矩形的折叠问题,利用勾股定理列出方程x2=42+(8﹣x)2是解决问题的关键.14、1【解析】
根据一元二次方程的解的定义,将x=﹣2代入已知方程,通过一元一次方程来求a的值.【详解】解:根据题意知,x=﹣2满足方程ax2+7x﹣2=0,则1a﹣11﹣2=0,即1a﹣16=0,解得,a=1.故答案是:1.【点睛】考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.15、1【解析】
根据题意得到关于的不等式组,解之得到的取值范围,解分式方程根据“该方程有整数解,且”,得到的取值范围,结合为整数,取所有符合题意的整数,即可得到答案.【详解】解:函数的图象经过第一,三,四象限,解得:,方程两边同时乘以得:,去括号得:,移项得:,合并同类项得:,系数化为1得:,该方程有整数解,且,是2的整数倍,且,即是2的整数倍,且,,整数为:2,6,,故答案为1.【点睛】本题考查了分式方程的解和一元一次不等式组的整数解,正确掌握解分式方程的方法和解一元一次不等式组的方法是解题的关键.16、x≥﹣1.【解析】
根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【详解】解:由题意得,1+x≥0,
解得x≥-1.
故答案为x≥-1.【点睛】本题考查二次根式的意义和性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.17、110cm1.【解析】试题解析:S=×10×14=110cm1.考点:菱形的性质.18、.【解析】试题分析:原式=.故答案为.考点:因式分解-运用公式法.三、解答题(共78分)19、或【解析】
根据矩形的性质求出∠D=90°,AB=CD=8,求出DE后根据勾股定理求出AE;过E作EM⊥AB于M,过P作PQ⊥CD于Q,求出AM=DE=3,当EP=EA时,AP=2DE=6,即可求出t;当AP=AE=5时,求出BP=3,即可求出t;当PE=PA时,则x2=(x-3)2+42,求出x,即可求出t.【详解】∵四边形ABCD是长方形,∴∠D=90°,AB=CD=8,∵CE=5,∴DE=3,在Rt△ADE中,∠D=90°,AD=4,DE=3,由勾股定理得:AE=5过E作EM⊥AB于M,过P作PQ⊥CD于Q,则AM=DE=3,若△PAE是等腰三角形,则有三种可能:当EP=EA时,AP=2DE=6,所以t==2;当AP=AE=5时,BP=8−5=3,所以t=3÷1=3;当PE=PA时,设PA=PE=x,BP=8−x,则EQ=5−(8−x)=x−3,则解得:x=,则t=(8−)÷1=,综上所述t=2或时,△PAE为等腰三角形。故答案为:2或.【点睛】本题考查等腰三角形的性质,分情况求得t的值是解题关键.20、【解析】试题分析:根据平移的性质可知(-4,1),(-1,2),(-2,4),然后可画图;根据关于原点对称的性质横纵坐标均变为相反数,可得(-1,-1),(-4,-2),(-3,-4),然后可画图.试题解析:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;考点:坐标平移,关于原点对称的性质21、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时,S=2;当<t≤时,S=-t2+t-.【解析】
(1)由勾股定理得出AB=,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可.(3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PHYN,如图4所示,②当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.【详解】(1)∵∠ACB=90°,AC=8,BC=1,∴AB=,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即:8×1=10×CD,∴CD=;(2)在Rt△ADC中,AD=,BD=AB-AD=10-=,当点N在线段CD上时,如图1所示:∵矩形PQMN,PQ总保持与AC垂直,∴PN∥AC,∴∠NPD=∠CAD,∵∠PDN=∠ADC,∴△PDN∽△ADC,∴,即:,解得:PD=,∴t=AD-PD=,当点Q在线段CD上时,如图2所示:∵PQ总保持与AC垂直,∴PQ∥BC,△DPQ∽△DBC,∴,即:,解得:DP=,∴t=AD+DP=,∴当矩形PQMN与线段CD有公共点时,t的取值范围为≤t≤;(3)当Q在AC上时,如图3所示:∵PQ总保持与AC垂直,∴PQ∥BC,△APQ∽△ABC,∴,即:,解得:AP=,当0<t<时,重叠部分是矩形PHYN,如图4所示:∵PQ∥BC,∴△APH∽△ABC,∴,即:,∴PH=,∴S=PH•PN=;当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.当<t≤时,如图5中重叠部分是五边形PQMJI,S=S矩形PNMQ-S△JIN=2-•(t-)[1-(-t)•]=-t2+t-.【点评】本题属于四边形综合题,考查了解直角三角形,矩形的性质,相似三角形的判定和性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.22、(1)见解析;(2)1【解析】
(1)利用基本作图作AC的垂直平分线得到点P;(2)根据线段垂直平分线的性质得到PA=PC,则利用等线段代换得到△DPC的周长=DA+DC,再根据等腰三角形的性质得到AD⊥BC,利用勾股定理计算出AD=8,从而可计算出△DPC的周长.【详解】解:(1)如图,点D为所作;(2)∵AC边的中垂线交AD于点P,∴P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江师范大学行知学院《建筑学专业导论》2023-2024学年第一学期期末试卷
- 中国音乐学院《生物信息技术》2023-2024学年第一学期期末试卷
- 郑州卫生健康职业学院《企业项目实践》2023-2024学年第一学期期末试卷
- 学习领会《教育强国建设规划纲要(2024-2035年)》心得体会
- 玉溪职业技术学院《数理统计及软件》2023-2024学年第一学期期末试卷
- 物流行业智能化协作网络设计
- IT业务数据季度总结模板
- 业务操作-房地产经纪人《业务操作》名师预测卷1
- 农业公司年度汇报
- 柏拉图与《理想国》读书笔记
- 2024年08月中国国新基金管理有限公司招考笔试历年参考题库附带答案详解
- 《直升机教材简体》课件
- 2025年广东汕头市人大常委会办公室招聘聘用人员3人历年高频重点提升(共500题)附带答案详解
- 2024-2030年中国游学行业投资前景研究与发展建议分析报告
- 软件需求分析报告模板(完整版)
- 金融软件开发及维护合同
- RFID涉密载体管控系统技术方案-V1.0-20120326
- 《中小学校园食品安全和膳食经费管理工作指引》专题培训
- 2022年山东省公务员录用考试《申论》真题(A类)及答案解析
- 2024全新学生实验安全培训
- 北师大版 三年级上册数学 寒假专项复习练习
评论
0/150
提交评论