版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
知识点01:解二元一次方程组【高频考点精讲】1.用“代入法”解二元一次方程组的一般步骤(1)从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来;(2)将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求出x(或y)的值;(4)将求得未知数的值代入变形后的关系式,求出另一个未知数的值;(5)把求得的x、y的值写在一起,用的形式表示,就是方程组的解。2.用“加减法”解二元一次方程组的一般步骤(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得x(或y)的值;(4)将求得未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值;(5)把求得的x、y的值写在一起,用的形式表示,就是方程组的解。知识点02:由实际问题抽象出二元一次方程组【高频考点精讲】1.由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系;2.一般来说,有几个未知量就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相符。3.找等量关系是列方程组的关键和难点,有以下规律和方法:(1)如果题目中国给出的条件由“;”分割成两部分,可以在“;”前、后找出对应的等量关系。(2)如果题目中借助表格提供信息,可以将信息进行横向或纵向对比,找出对应的等量关系;(3)如果题目中给出图形,可以分析图形的长、宽,找出对应的等量关系。知识点03:列二元一次方程组解决实际问题【高频考点精讲】1.审题:找出已知条件和未知量以及它们之间的关系;2.设元:找出题目中两个关键的未知量,并用字母表示出来,直接设元与间接设元;3.列方程组:找出题目中的两个等量关系,列出方程组;4.求解;5.检验作答:检验所求解是否符合实际意义,并作答。知识点04:三元一次方程组的应用【高频考点精讲】在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程。1.把求等式中常数的问题可转化为解三元一次方程组,为以后待定系数法求二次函数解析式奠定基础;2.通过设二元与三元的对比,体验三元一次方程组在解决多个未知数问题中的优越性。检测时间:90分钟试题满分:100分难度系数:0.58一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•绵阳)我国古代数学著作《孙子算经)中有“鸡兔同笼”问题:“今有鸡兔同笼,上有16头,下有44足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组()A. B. C. D.解:∵上有16头,∴x+y=16;∵下有44足,∴2x+4y=44.∴根据题意可列方程组.故选:A.2.(2分)(2023•泰安)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两.根据题意得()A. B. C. D.解:∵甲袋中装有黄金9枚,乙袋中装有白银11枚,称重两袋相等,∴9x=11y;∵两袋互相交换1枚后,甲袋比乙袋轻了13两,∴(10y+x)﹣(8x+y)=13.根据题意可列方程组.故选:C.3.(2分)(2023•甘孜州)有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设大桶可以盛酒x斛,小桶可以盛酒y斛,则可列方程组为()A. B. C. D.解:由题意得:,故选:A.4.(2分)(2023•西宁)《孙子算经》中有一道题,原文是:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y尺,根据题意列方程组得()A. B. C. D.解:由题意可得,,故选:A.5.(2分)(2023•眉山)已知关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0 B.1 C.2 D.3解:∵关于x、y的二元一次方程组为,①﹣②,得:2x﹣2y=2m+6,∴x﹣y=m+3,∵x﹣y=4,∴m+3=4,∴m=1.故选:B.6.(2分)(2023•黑龙江)某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A,B,C三种图书,A种每本30元,B种每本25元,C种每本20元,其中A种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有()A.5种 B.6种 C.7种 D.8种解:当购买5本A种图书时,设购买x本B种图书,y本C种图书,根据题意得:30×5+25x+20y=500,∴x=14﹣y,又∵x,y均为正整数,∴或或,∴当购买5本A种图书时,有3种采购方案;当购买6本A种图书时,设购买m本B种图书,n本C种图书,根据题意得:30×6+25m+20n=500,∴n=16﹣m,又∵m,n均为正整数,∴或或,∴当购买6本A种图书时,有3种采购方案.∴此次采购的方案有3+3=6(种).故选:B.7.(2分)(2023•宜宾)“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有x只,兔有y只,则所列方程组正确的是()A. B. C. D.解:由题意得:,故选:B.8.(2分)(2023•齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150cm的导线,将其全部截成10cm和20cm两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有()A.5种 B.6种 C.7种 D.8种解:设截成10cm的导线x根,截成20cm的导线y根,根据题意得10x+20y=150,∴x=15﹣2y,∵15﹣2y>0,∴y<7.5,∵y是正整数,∴y的值为1,2,3,4,5,6,7,即截取方案共有7种.故选:C.9.(2分)(2023•绍兴)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛,问大容器、小容器的容量各是多少斛?设大容器的容量为x斛,小容器的容量为y斛,则可列方程组是()A. B. C. D.解:由题意得:,故选:B.10.(2分)(2023•宁波)茶叶作为浙江省农业十大主导产业之一,是助力乡村振兴的民生产业.某村有土地60公顷,计划将其中10%的土地种植蔬菜,其余的土地开辟为茶园和种植粮食,已知茶园的面积比种粮食面积的2倍少3公顷,问茶园和种粮食的面积各多少公顷?设茶园的面积为x公顷,种粮食的面积为y公顷,可列方程组为()A. B. C. D.解:设茶园的面积为x公顷,种粮食的面积为y公顷,由题意得:,故选:B.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•谷城县模拟)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有48文;如果乙得到甲所有钱的,那么乙共有钱48文,甲、乙二人原来各有多少钱?试求甲原有36文钱.解:设甲原有x文钱,乙原有y文钱,依题意,得:,解得:.故答案为:36.12.(2分)(2023•四平三模)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常快捷地解决这个问题,如果设鸡有x只,兔有y只,那么可列方程组为.解:∵上有三十五头,∴x+y=35;∵下有九十四足,∴2x+4y=94.∴根据题意可列方程组.故答案为:.13.(2分)(2023•朝阳)已知关于x,y的方程组的解满足x﹣y=4,则a的值为2.解:,①﹣②得:x﹣y=a+2,又∵关于x,y的方程组的解满足x﹣y=4,∴a+2=4,∴a=2.故答案为:2.14.(2分)(2023•盐城)我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为7人.解:设该问题中的人数为x人,物品的价格为y钱,根据题意得:,解得:,∴该问题中的人数为7人.故答案为:7人.15.(2分)(2023•永康市一模)《水浒传》中关于神行太保戴宗有这样一段描述:程途八百里,朝去暮还来.某日,戴宗去180里之外的地方打探情报,去时顺风,用了2小时;回来时逆风,用了6小时,则戴宗的速度为60里/小时.解:戴宗顺风行走的速度为:180÷2=90(里/小时),戴宗逆风行走的速度为:180÷6=30(里/小时),设戴宗的速度为x里/小时,风速为y里/小时,由题意得:,解得:,∴设戴宗的速度为60里/小时,答:戴宗的速度为60里/小时.故答案为:60.16.(2分)(2023•朝阳区一模)一个33人的旅游团到一家酒店住宿,酒店的客房只剩下4间一人间和若干间三人间,住宿价格是一人间每晚100元,三人间每晚130元.(说明:男士只能与男士同住,女士只能与女士同住,三人间客房可以不住满,但每间每晚仍需支付130元.)(1)若该旅游团一晚的住宿房费为1530元,则他们租住了1间一人间;(2)若该旅游团租住了3间一人间,且共有19名男士,则租住一晚的住宿房费最少为1600元.解:(1)设该旅游团租住了x间一人间,y间三人间,根据题意得:100x+130y=1530,∴x=,又∵x,y均为自然数,且x≤4,∴,∴他们租住了1间一人间.故答案为:1;(2)当租住的三人间全部住满时,租住一晚的住宿房费最少.∵19﹣1=18(人),18÷3=6(间),33﹣19﹣(3﹣1)=12(人),12÷3=4(间),6+4=10(间),∴租住一晚的住宿房费最少的租住方案为:租住的3间一人间里面1间住男士,2间住女士,另租住10间三人间,∴此时租住一晚的住宿房费为100×3+130×10=1600(元),∴租住一晚的住宿房费最少为1600元.故答案为:1600.17.(2分)(2023•秦淮区模拟)关于x,y的方程组的解满足x+y=1,则m的值为﹣1.解:方程组两式相加得:3x+3y=4+m,即x+y=,∵x+y=1,∴=1解得:m=﹣1,故答案为:﹣1.18.(2分)(2023•上虞区模拟)我国古代数学问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,问井深几尺?则该问题中的井深是8尺.解:设绳长是x尺,井深是y尺,依题意有,解得,.故井深是8尺.故答案为:8.19.(2分)(2023•威海)《九章算术》中有一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”题目大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问有多少人?该物品价值多少元?设有x人,该物品价值y元,根据题意列方程组:.解:若设有x人,物品价值y元,根据题意,可列方程组为,故答案为:.20.(2分)(2023•仪征市二模)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为.解:设人数为x,买鸡的钱数为y,可列方程组为:.故答案为:.三.解答题(共8小题,满分60分)21.(6分)(2023•西藏)列方程(组)解应用题如图,巴桑家客厅的电视背景墙是由10块形状大小相同的长方形墙砖砌成.(1)求一块长方形墙砖的长和宽;(2)求电视背景墙的面积.解:(1)设一块长方形墙砖的长为xm,宽为ym.依题意得:,解得:,答:一块长方形墙砖的长为1.2m,宽为0.3m.(2)求电视背景墙的面积为:2×1.2×1.5=3.6(m2).答:电视背景墙的面积为3.6m2.22.(6分)(2023•常德)解方程组:.解:①×2+②得:5x=25,解得:x=5,将x=5代入①得:5﹣2y=1,解得:y=2,所以原方程组的解是.23.(8分)(2023•重庆)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?解:(1)设购买杂酱面x份,牛肉面y份,根据题意得:,解得:.答:购买杂酱面80份,牛肉面90份;(2)设购买牛肉面m份,则购买杂酱面(1+50%)m份,根据题意得:﹣=6,解得:m=60,经检验,m=60是所列方程的解,且符合题意.答:购买牛肉面60份.24.(8分)(2023•张家界)为拓展学生视野,某中学组织八年级师生开展研学活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出三辆车,且其余客车恰好坐满.现有甲、乙两种客车,它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)4560租金(元/辆)200300(1)参加此次研学活动的师生人数是多少?原计划租用多少辆45座客车?(2)若租用同一种客车,要使每位师生都有座位,应该怎样租用才合算?解:(1)设参加此次研学活动的师生人数是x人,原计划租用y辆45座客车.根据题意,得,解得.答:参加此次研学活动的师生人数是600人,原计划租用13辆45座客车;(2)租45座客车:600÷45≈14(辆),所以需租14辆,租金为200×14=2800(元),租60座客车:600÷60=10(辆),所以需租10辆,租金为300×10=3000(元),∵2800<3000,∴租用14辆45座客车更合算.25.(8分)(2023•安徽)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元.已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.解:设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,由题意得:,解得:,答:调整前甲地该商品的销售单价为40元,乙地该商品的销售单价为50元.26.(8分)(2023•深圳)某商场在世博会上购置A,B两种玩具,其中B玩具的单价比A玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.(1)求A,B玩具的单价;(2)若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A玩具?解:(1)设每件A玩具的进价为x元,则每件B玩具的进价为(x+25)元,根据题意得:2(x+25)+x=200,解得:x=50,可得x+25=50+25=75,则每件A玩具的进价为50元,每件B玩具的进价为75元;(2)设商场可以购置A玩具y个,根据题意得:50y+75×2y≤20000,解得:y≤100,则最多可以购置A玩具100个.27.(8分)(2023•宜昌)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.豆沙粽数量肉粽数量付款金额小欢妈妈2030270小乐妈妈3020230(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,下表列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);①根据上表,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A,B两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A,B两种包装中分别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵阳幼儿师范高等专科学校《动画场景设计》2023-2024学年第一学期期末试卷
- 2025山西省安全员C证(专职安全员)考试题库
- 硅湖职业技术学院《面向对象技术》2023-2024学年第一学期期末试卷
- 2025甘肃省建筑安全员考试题库
- 广州幼儿师范高等专科学校《绿色建筑与绿色施工》2023-2024学年第一学期期末试卷
- 2025年四川建筑安全员-B证(项目经理)考试题库
- 广州卫生职业技术学院《温病学》2023-2024学年第一学期期末试卷
- 2025贵州建筑安全员B证(项目经理)考试题库
- 2025黑龙江省安全员-C证(专职安全员)考试题库
- 《ESD知识和控制》课件
- 人教版四年级上册竖式计算400题及答案
- 重庆开县2023-2024学年七年级上学期期末数学检测卷(含答案)
- 血气分析结果判读及临床应用护理课件
- 智能船舶与海洋工程:物联网在船舶与海洋工程中的应用
- 高速服务区经营分析报告
- 浙江省湖州市2022-2023学年四年级上学期数学期末试卷(含答案)
- 建井施工方案
- YMO青少年数学思维28届五年级全国总决赛试卷
- 个人业绩相关信息采集表
- 过敏性紫癜课件PPT
- 大学生暑期社会实践证明模板(20篇)
评论
0/150
提交评论