




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙青竹湖湘一外国语学校2024年八年级数学第二学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.为了解某学校七至九年级学生每天的体育锻炼时间,下列抽样调查的样本代表性较好的是()A.选择七年级一个班进行调查B.选择八年级全体学生进行调查C.选择全校七至九年级学号是5的整数倍的学生进行调查D.对九年级每个班按5%的比例用抽签的方法确定调查者2.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能是()A.正三角形 B.正方形 C.正五边形 D.正六边形3.如图,已知直角坐标系中的点A、B的坐标分别为A(2,4)、B(4,0),且P为AB的中点.若将线段AB向右平移3个单位后,与点P对应的点为Q,则点Q的坐标是()A.(3,2) B.(6,2) C.(6,4) D.(3,5)4.一个矩形的围栏,长是宽的2倍,面积是,则它的宽为()A. B. C. D.5.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.226.解分式方程时,去分母变形正确的是()A. B.C. D.7.反比例函数y=(2m-1),当x>0时,y随x的增大而增大,则m的值是()A.m=±1 B.小于的实数 C.-1 D.18.如图,在平行四边形ABCD中,对角线AC和BD相交于点O,点E是BC边的中点,OE=1,则AB的长为()A.2 B.1C. D.49.点P(2,5)经过某种图形变化后得到点Q(﹣2,5),这种图形变化可以是()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.上下平移10.如图,在▱ABCD中,对角线AC、BD交于点O,下列式子中不一定成立的是()A.AB∥CD B.OA=OC C.∠ABC+∠BCD=180° D.AB=BC11.下列四边形中,对角线相等且互相垂直平分的是(
)A.平行四边形 B.正方形 C.等腰梯形 D.矩形12.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.9二、填空题(每题4分,共24分)13.如图,在△ABC中,AB=BC=4,S△ABC=4,点P、Q、K分别为线段AB、BC、AC上任意一点,则PK+QK的最小值为_______14.如图,一根旗杆在离地面5m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆断裂之前的高为____.
15.如图,在平面直角坐标系中,已知,,是轴上的一条动线段,且,当取最小值时,点坐标为______.16.在△ABC中,∠C=90°,BC=60cm,CA=80cm,一只蜗牛从C点出发,以每分20cm的速度沿CA﹣AB﹣BC的路径再回到C点,需要____分的时间.17.若直角三角形的两边长分别为1和2,则斜边上的中线长为_____.18.如图,矩形中,,将矩形绕点顺时针旋转,点分别落在点处,且点在同一条直线上,则的长为__________.三、解答题(共78分)19.(8分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折叠DE分别交AB、AC于E、G,连接GF,下列结论:①∠FGD=112.5°②BE=2OG③S△AGD=S△OGD④四边形AEFG是菱形()A.1个 B.2个 C.3个 D.4个20.(8分)(1)解方程:﹣=1(2)先化简,再求值:÷(﹣x﹣2),其中x=﹣221.(8分)计算:(1)|1-2|+.(2)22.(10分)某市自来水公司为了鼓励市民节约用水,采取分段收费标准.若某户居民每月应缴水费y(元)与用水量x(吨)的函数图象如图所示,(1)分别写出x≤5和x>5的函数解析式;(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准;(3)若某户居民六月交水费31元,则用水多少吨?23.(10分)某工厂为了解甲、乙两个部门员工的生产技能情况,从甲、乙两个部门各随机抽取20名员工,进行生产技能测试,测试成绩(百分制)如下:甲
78
8674
81
75
76
87
70
75
90
75
79
81
70
74
80
86
69
83
77乙
93
7388
81
72
81
94
83
77
83
80
81
70
81
73
78
82
80
70
40(说明:成绩80分及以上为优秀,70-79分为良好,60-69分为合格,60分以下为不合格)(1)请填完整表格:部门平均数中位数众数甲78.375乙7880.5
(2)从样本数据可以推断出部门员工的生产技能水平较高,请说明理由.(至少从两个不同的角度说明推断的合理性).24.(10分)已知:如图,△OAB,点O为原点,点A、B的坐标分别是(2,1)、(﹣2,4).(1)若点A、B都在一次函数y=kx+b图象上,求k,b的值;(2)求△OAB的边AB上的中线的长.25.(12分)如图,在四边形ABCD中,AD//BC,∠D=90°,E为边BC上一点,且EC=AD,连接(1)求证:四边形AECD是矩形;
(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,26.如图所示,在□ABCD中,点E,F在它的内部,且AE=CF,BE=DF,试指出AC与EF的关系,并说明理由.
参考答案一、选择题(每题4分,共48分)1、C【解析】
直接利用抽样调查必须具有代表性,进而分析得出答案.【详解】抽样调查的样本代表性较好的是:选择全校七至九年级学号是5的整数倍的学生进行调查,故选C.【点睛】此题主要考查了抽样调查的可靠性,正确把握抽样调查的意义是解题关键.2、C【解析】
平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C【点睛】用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.3、B【解析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】根据中点坐标的求法可知点坐标为,因为左右平移点的纵坐标不变,由题意向右平移3个单位,则各点的横坐标加3,所以点的坐标是.故选:.【点睛】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.4、A【解析】
设宽为xm,则长为2xm,根据矩形的面积公式列出方程即可.【详解】解:设宽为xm,则长为2xm,依题意得:∴∵∴故选:A【点睛】本题考查了一元二次方程的应用,利用矩形的面积公式列出方程是解决本题的关键.5、B【解析】
直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:1.故选B.【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解.6、D【解析】
先对分式方程乘以,即可得到答案.【详解】去分母得:,故选:D.【点睛】本题考查去分母,解题的关键是掌握通分.7、C【解析】
根据反比例函数的定义列出方程:m2−2=−1求解,再根据它的性质列出不等式:2m−1<0决定解的取舍.【详解】根据题意,m2−2=−1,解得m=±1,又∵2m−1≠0,∴m≠,∵y随x的增大而增大,2m−1<0,得m<,∴m=−1.故选C.【点睛】本题考查反比例函数的性质,反比例函数的定义.根据反比例函数自变量x的次数为-1.k>0时,在各自象限y随x的增大而减小;k<0时,在各自象限y随x的增大而增大.8、A【解析】
首先证明OE是△BCD的中位线,再根据平行四边形的性质即可解决问题.【详解】∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,∵BE=EC,∴OE=CD,∵OE=1,∴AB=CD=2,故答案为:A【点睛】此题考查平行四边形的性质,三角形中位线定理,解题关键在于求出OE是△BCD的中位线9、B【解析】
根据平面内两点关于y轴对称的点,横坐标互为相反数,纵坐标不变从而得出结论【详解】∵点P(2,5)经过某种图形变化后得到点Q(﹣2,5),∴这种图形变化可以是关于y轴对称.故选B.【点睛】此题主要考查平面内两点关于y轴对称的点坐标特征10、D【解析】
根据平行四边形的性质分析即可.【详解】解:由平行四边形的性质可知:平行四边形对边平行,故A一定成立,不符合题意;平行四边形的对角线互相平分;故B一定成立,不符合题意;平行四边形对边平行,所以邻角互补,故C一定成立,不符合题意;平行四边形的邻边不一定相等,只有为菱形或正方形时才相等,故D不一定成立,符合题意.
故选:D.【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的性质是解决问题的关键.11、B【解析】
解:对角线相等且互相垂直平分的四边形是正方形,故选B.【点睛】本题考查等腰梯形的性质;平行四边形的性质;矩形的性质;正方形的性质.12、D【解析】试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.二、填空题(每题4分,共24分)13、2【解析】
试题解析::如图,过A作AH⊥BC交CB的延长线于H,∵AB=CB=4,S△ABC=4,∴AH=2,∴cos∠HAB=,∴∠HAB=30°,∴∠ABH=60°,∴∠ABC=120°,∵∠BAC=∠C=30°,作点P关于直线AC的对称点P′,过P′作P′Q⊥BC于Q交AC于K,则P′Q的长度=PK+QK的最小值,∴∠P′AK=∠BAC=30°,∴∠HAP′=90°,∴∠H=∠HAP′=∠P′QH=90°,∴四边形AP′QH是矩形,∴P′Q=AH=2,即PK+QK的最小值为2.【点睛】本题考查了轴对称确定最短路线问题,矩形的性质,解直角三角形,熟记利用轴对称确定最短路线的方法是解题的关键.14、18m【解析】旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13m,所以旗杆折断之前高度为13m+5m=18m.故答案为18m.15、【解析】
如图把点A向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时AP+PQ+QB的值最小,求出直线BF的解析式,即可解决问题.【详解】解:如图把点4向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时4P+PQ+QB的值最小.设最小BF的解析式为y=kx+b,则有解得∴直线BF的解析式为y=x-2,令y=0,得到x=2.∴Q(2.0)故答案为(2,0).【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型16、1【解析】
运用勾股定理可求出斜边AB的长,然后可求出直角三角形的周长即蜗牛所走的总路程,再除以蜗牛的行走速度即可求出所需的时间.【详解】解:由题意得,100cm,∴AB=100cm;∴CA+AB+BC=60+80+100=240cm,∴240÷20=1(分).故答案为1.【点睛】本题考查了速度、时间、路程之间的关系式及勾股定理的应用,考查了利用勾股定理解直角三角形的能力.17、1或【解析】
分①2是直角边,利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答;②2是斜边时,根据直角三角形斜边上的中线等于斜边的一半解答.【详解】①若2是直角边,则斜边=,斜边上的中线=,②若4是斜边,则斜边上的中线=,综上所述,斜边上的中线长是1或.故答案为1或.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,难点在于分情况讨论.18、【解析】
根据平行的性质,列出比例式,即可得解.【详解】设的长为根据题意,得∴又∵∴∴解得(不符合题意,舍去)∴的长为.【点睛】此题主要考查矩形的性质,关键是列出关系式,即可解题.三、解答题(共78分)19、C【解析】
①由四边形ABCD是正方形和折叠性得出∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,再由三角形的内角和求出∠FGD=112.5°.故①正确,②④由四边形ABCD是正方形和折叠,判断出四边形AEFG是平行四边形,再由AE=EF,得出四边形AEFG是菱形.利用45°的直角三角形得出GF=OG,BE=EF=GF,得出BE=2OG,故②④正确.③由四边形ABCD是正方形和折叠性,得到△ADG≌△FDG,所以S△AGD=S△FDG≠S△OGD故③错误.【详解】①由四边形ABCD是正方形和折叠性知,∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,∴∠FGD=180°﹣∠DFG﹣∠FDG=180°﹣45°﹣22.5°=112.5°,故①正确,②由四边形ABCD是正方形和折叠性得出,∠DAG=∠DFG=45°,∠EAD=∠EFD=90°,AE=EF,∵∠ABF=45°,∴∠ABF=∠DFG,∴AB∥GF,又∵∠BAC=∠BEF=45°,∴EF∥AC,∴四边形AEFG是平行四边形,∴四边形AEFG是菱形.∵在Rt△GFO中,GF=OG,在Rt△BFE中,BE=EF=GF,∴BE=2OG,故②④正确.③由四边形ABCD是正方形和折叠性知,AD=FD,AG=FG,DG=DG,在△ADG和△FDG中,,∴△ADG≌△FDG(SSS),∴S△AGD=S△FDG≠S△OGD故③错误.正确的有①②④,故选C.【点睛】本题主要考查了折叠问题,菱形的判定及正方形的性质,解题的关键是明确图形折叠前后边及角的大小没有变化.20、(1)x=2;(2);-2.【解析】
(1)根据分式方程的解法即可求出答案.(2)根据分式的运算法则即可求出答案.【详解】(1)x(x+1)﹣3(x﹣1)=(x﹣1)(x+1)x2+x﹣3x+3=x2﹣1x=2经检验:x=2是原方程的根(2)当x=﹣2时,原式=÷=﹣×==﹣=﹣2.【点睛】本题考查学生的运算,解题的关键是熟练运用运算法则,本题属于基础题型.21、(1)0;(2).【解析】
(1)根据绝对值的意义、零指数幂的意义计算;
(2)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【详解】(1)解:原式.(2)解:原式.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22、(1)(x≤5),(x>5);(2)见解析;(3)9吨.【解析】【分析】(1)用待定系数法可求解析式;(2)由(1)解析式得出:x≤5自来水公司的收费标准是每吨3元.(3)把y=31代入(x>5)即可.x>5自来水公司的收费标准是每吨4元;【详解】解:(1)(x≤5),(x>5)(2)由(1)解析式得出:x≤5自来水公司的收费标准是每吨3元.x>5自来水公司的收费标准是每吨4元;(3)若某户居民六月交水费31元,设用水x吨,,解得:x=9(吨)【点睛】本题考核知识点:一次函数的应用.解题关键点:结合一次函数的图象解决问题.23、(1)77.5,81;(2)乙,理由见解析.【解析】
(1)根据中位数和众数的定义分别进行解答即可;(2)从中位数和众数方面分别进行分析,即可得出乙部门员工的生产技能水平较高.【详解】解:(1)根据中位数的定义可得:甲部门的中位数是第10、11个数的平均数,即=77.5;∵81出现了4次,出现的次数最多,∴乙部门的众数是81,填表如下:部门平均数中位数众数甲78.377.575乙7880.581故答案为:77.5,81;(2)从样本数据可以推断出乙部门员工的生产技能水平较高,理由为:①乙部门在技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;②乙部门在生产技能测试中,众数高于甲部门,所以乙部门员工的生产技能水平较高;故答案为:乙.【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.24、(1)k=﹣,b=;(2)AB边上的中线长为.【解析】
(1)由A、B两点的坐标利用待定系数法可求得k、b的值;(2)由A、B两点到y轴的距离相等可知直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版债权转股权合同
- 二零二五房地产估价委托协议合同书范文
- 借款居间服务合同及借款合同二零二五年
- 出租车司机聘用协议书二零二五年
- 土地拍卖转让协议书
- 公司投资公司合作合同范例二零二五年
- 2025工程项目承包合同(合同范本)
- 2025年版场地租赁合同范本
- 2025商业贷款质押合同
- 吸氧并发症及护理措施
- 液化天然气生产工艺
- 胆管癌术后护理病例讨论
- WMT8-2022二手乘用车出口质量要求
- 大学《思想道德与法治》期末考试复习题库(含答案)
- 钦州市充电站建设计划书
- 婚纱行业基础知识培训课件
- 智能灯具故障排除方案
- 《少先队员采茶歌》课件
- 新外研版高一英语必修二unit6课文
- 气排球比赛积分表
- 20道瑞幸咖啡营运经理岗位常见面试问题含HR常问问题考察点及参考回答
评论
0/150
提交评论