2024年广东省广州市华南师范大附属中学数学八年级下册期末教学质量检测模拟试题含解析_第1页
2024年广东省广州市华南师范大附属中学数学八年级下册期末教学质量检测模拟试题含解析_第2页
2024年广东省广州市华南师范大附属中学数学八年级下册期末教学质量检测模拟试题含解析_第3页
2024年广东省广州市华南师范大附属中学数学八年级下册期末教学质量检测模拟试题含解析_第4页
2024年广东省广州市华南师范大附属中学数学八年级下册期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年广东省广州市华南师范大附属中学数学八年级下册期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列事件为必然事件的是()A.某运动员投篮时连续3次全中 B.抛掷一块石块,石块终将下落C.今天购买一张彩票,中大奖 D.明天我市主城区最高气温为38℃2.函数y=2x﹣5的图象经过()A.第一、三、四象限 B.第一、二、四象限C.第二、三、四象限 D.第一、二、三象限3.随机抽取10名八年级同学调查每天使用零花钱的情况,结果如下表,则这10名同学每天使用零花钱的中位数是()每天使用零花钱的情况

单位(元)2345人数1522A.2元 B.3元 C.4元 D.5元4.如图,已知一组平行线a//b//c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=2,BC=3,DE=l.6,则EF=()A.2.4 B.1.8 C.2.6 D.2.85.关于x的分式方程有增根,则a的值为()A.﹣3 B.﹣5 C.0 D.26.如图①,,点在线段上,且满足.如图②,以图①中的,长为边建构矩形,以长为边建构正方形,则矩形的面积为()A. B. C. D.7.如图,矩形的面积为28,对角线交于点;以、为邻边作平行四边形,对角线交于点;以、为邻边作平行四边形;…依此类推,则平行四边形的面积为()A. B. C. D.8.如图①,正方形中,点以每秒2cm的速度从点出发,沿的路径运动,到点停止.过点作与边(或边)交于点的长度与点的运动时间(秒)的函数图象如图②所示.当点运动3秒时,的面积为()A. B. C. D.9.下列事件中,属于随机事件的是()A.没有水分,种子发芽; B.小张买了一张彩票中500万大奖;C.抛一枚骰子,正面向上的点数是7; D.367人中至少有2人的生日相同.10.自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是()A.汽车在0~1小时的速度是60千米/时B.汽车在2~3小时的速度比0~0.5小时的速度快C.汽车从0.5小时到1.5小时的速度是80千米/时D.汽车行驶的平均速度为60千米/时二、填空题(每小题3分,共24分)11.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是_____.12.若关于x的分式方程的解为非负数,则a的取值范围是_____.13.某种细菌的直径约为0.00000002米,用科学记数法表示该细菌的直径约为____米.14.如图,正方形ABCD的边长为6,点E,F分别在边AB,BC上,若F是BC的中点,且∠EDF=45°,则BE的长为_______.15.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是__.16.如图,正方形ABCD的面积为,则图中阴影部分的面积为______________.17.已知矩形的长a=,宽b=,则这个矩形的面积是_____.18.如图,正方形ABCD是出四个全等的角三角形围成的,若,,则EF的长为________。三、解答题(共66分)19.(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.20.(6分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?21.(6分)在正方形ABCD中,E是△ABD内的点,EB=EC.(1)如图1,若EB=BC,求∠EBD的度数;(2)如图2,EC与BD交于点F,连接AE,若,试探究线段FC与BE之间的等量关系,并说明理由.22.(8分)解关于x的方程:23.(8分)已知关于x的方程x2-3x+c=0有两个实数根.(1)求c的取值范围;(2)若c为正整数,取符合条件的c的一个值,并求出此时原方程的根.24.(8分)直线L与y=2x+1的交于点A(2,a),与直线y=x+2的交于点B(b,1)(1)求a,b的值;(2)求直线l的函数表达式;(3)求直线L、x轴、直线y=2x+1围成的图形的面积.25.(10分)一次期中考试中,甲、乙、丙、丁、戍五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)甲乙丙丁戍平均分标准差数学7172696870英语888294857685(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择.标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问甲同学在本次考试中,数学与英语哪个学科考得更好?26.(10分)如图,平行四边形中,点分别在上,且与相交于点,求证:.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、某运动员投篮时连续3次全中,是随机事件;B、抛掷一块石块,石块终将下落,是必然事件;C、今天购买一张彩票,中大奖,是随机事件;D、明天我市主城区最高气温为38℃,是随机事件;故选择:B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、A【解析】

先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【详解】∵一次函数y=2x-5中,k=2>0,

∴此函数图象经过一、三象限,

∵b=-5<0,

∴此函数图象与y轴负半轴相交,

∴此一次函数的图象经过一、三、四象限,不经过第二象限.

故选A.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.3、B【解析】

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:共10名同学,中位数是第5和第6的平均数,故中位数为3,

故选B.【点睛】本题考查中位数,正确理解中位数的意义是解题的关键.4、A【解析】

根据平行线分线段成比例定理得到,然后利用比例性质可求出EF的长.【详解】解:∵a∥b∥c,∴,即,∴EF=2.1.故选:A.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.5、B【解析】

分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程计算即可求出a的值.【详解】分式方程去分母得:x−2=a,由分式方程有增根,得到x+3=0,即x=−3,把x=−3代入整式方程得:a=−5,故选:B.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.6、C【解析】

利用黄金比进行计算即可.【详解】解:由得,

AC=AB=×2=-1,BC=AB=×2=3-,

因为四边形CBDE为正方形,所以EC=BC,

AE=AC-CE=AC-BC=(-1)-(3-)=2-4,

矩形AEDF的面积:AE•DE=(2-4)×(3-)=10-1.

故选C.【点睛】本题考查黄金分割的意义,熟练利用黄金比计算是解题的关键.7、C【解析】

设矩形ABCD的面积为S,则平行四边形AOC1B的面积=矩形ABCD的面积=S,平行四边形AO1C2B的面积=平行四边形AOC1B的面积=,…,平行四边形AOn-1CnB的面积=,平行四边形AOnCn+1B的面积=,即可得出结果.【详解】解:设矩形ABCD的面积为S根据题意得:平行四边形AOC1B的面积=矩形ABCD的面积=S平行四边形AO1C2B的面积=平行四边形AOC1B的面积=,…平行四边形AOn-1CnB的面积=∴平行四边形AOnCn+1B的面积=∴平行四边形的面积=故选C.【点睛】本题考查了矩形的性质、平行四边形的性质、规律推论等知识,熟练掌握矩形的性质和平行四边形的性质,得出平行四边形AOnCn+1B的面积=是解题的关键.8、B【解析】

由图②知,运动2秒时,,距离最长,再根据运动速度乘以时间求得路程,可得点P的位置,根据线段的和差,可得CP的长,最后由即可求得答案.【详解】由图②知,运动2秒时,,的值最大,此时,点P与点B重合,则,∵四边形为正方形,则,∴,由题可得:点P运动3秒时,则P点运动了6cm,

此时,点P在BC上,如图:

∴cm,∴点P为BC的中点,∵PQ∥BD,∴点Q为DC的中点,∴.故选:B.【点睛】本题考查了动点问题的函数图象以及平行线的性质、正方形的性质、三角形中位线定理,由图②知,运动2秒时,,求得正方形的边长是解题的关键.9、B【解析】A选项中,因为“没有水分,种子发芽”是“确定事件中的不可能事件”,所以不能选A;B选项中,因为“小张买了一张彩票中500万大奖”是“随机事件”,所以可以选B;C选项中,因为“抛一枚骰子,正面向上的点数是7”是“确定事件中的不可能事件”,所以不能选C;D选项中,因为“367人中至少有2人的生日相同”是“确定事件中的必然事件”,所以不能选D.故选B.10、C【解析】由图像可得:0到0.5小时行驶路程为30千米,所以速度为60km/h;0.5到1.5小时行驶路程为90千米,所以速度为80km/h;之后休息了0.5小时;2到3小时行驶路程为40千米,所以速度为40km/h;路程为150千米,用时3小时,所以平均速度为50km/h;故A、B、D选项是错误的,C选项正确.故选C.二、填空题(每小题3分,共24分)11、:2或﹣1.【解析】试题解析:当k>0时,y值随x值的增大而增大,∴,解得:,此时=2;当k<0时,y值随x值的增大减小,∴,解得:,此时=-1.综上所述:的值为2或-1.12、且【解析】分式方程去分母得:2(2x-a)=x-2,去括号移项合并得:3x=2a-2,解得:,∵分式方程的解为非负数,∴且,解得:a≥1且a≠4.13、【解析】试题解析:0.00000002=2×10-8.点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.14、4【解析】

延长F至G,使CG=AE,连接DG,由SAS证明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再证明△EDF≌△GDF,得出EF=GF,设AE=CG=x,则EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,从而求得BE的长即可.【详解】解:延长F至G,使CG=AE,连接DG、EF,如图所示:∵四边形ABCD是正方形,∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,∴∠DCG=90°,在△ADE和△CDG中,AE=CG∠A=∠DCG=∴△ADE≌△CDG(SAS),∴DE=DG,∠ADE=∠CDG,∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,∵∠EDF=45°,∴∠GDF=45°,在△EDF和△GDF中,DE=DG∠EDF=∠GDF∴△EDF≌△GDF(SAS),∴EF=GF,∵F是BC的中点,∴BF=CF=3,设AE=CG=x,则EF=GF=CF+CG=3+x,在Rt△BEF中,由勾股定理得:32解得:x=2,即AE=2,∴BE=AB-AE=6-2=4.【点睛】此题考查了正方形的性质,全等三角形的判定与性质以及勾股定理,利用了方程的思想,证明三角形全等是解本题的关键.15、【解析】

根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【详解】∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是,故答案为.【点睛】考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.16、【解析】试题分析:根据正方形的对称性,可知阴影部分的面积为正方形面积的一半,因此可知阴影部分的面积为.17、1【解析】

根据矩形的面积公式列出算式,根据二次根式的乘法法则计算,得到答案.【详解】矩形的面积=ab=×=×1××3=1,故答案为:1.【点睛】本题考查的是二次根式的应用,掌握二次根式的乘法法则是解题的关键.18、【解析】

根据全等三角形的性质得到BH=AE=5,得到EH=BE-BH=7,根据勾股定理计算即可.【详解】,同理,HF=7,故答案为.【点睛】本题考查了全等三角形的性质和勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.三、解答题(共66分)19、见解析;【解析】试题分析:(1)直接利用三角形中位线定理得出DEBC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长试题解析:(1)证明:∵D、E分别为AB、AC的中点,∴DEBC,∵延长BC至点F,使CF=BC,∴DEFC,即DE=CF;(2)解:∵DEFC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质20、(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.【解析】

(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润每千克利润销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+1.当x=23.5时,y=﹣2x+1=2.答:当天该水果的销售量为2千克.(2)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=35,x2=3.∵20≤x≤32,∴x=3.答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.【点睛】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.21、(1)15°;(2)【解析】

(1)根据等边三角形的性质得∠EBC=60°,根据正方形的一条对角线平分内角可得∠CBD=45°,根据角的和与差可得结论;

(2)连接AF,证明△ABF≌△CBF(SAS),得AF=CF,∠BAF=∠BCF,根据等腰三角形的性质和等式的性质得∠ABE=∠DCE,从而得∠AGB=90°,最后利用面积和表示四边形ABFE的面积,可得结论.【详解】解:如解图1,四边形是正方形,平分∴.,是等边三角形.∴∠EBC=60°

°解:理由如下:如解图2,连接与交于点,四边形是正方形,.又.,由得,又..在中,.【点睛】本题考查了正方形的性质,三角形全等的性质和判定,三角形的面积,等边三角形的性质和判定等知识,解题的关键是熟练掌握正方形的性质,在正方形中确定全等三角形,属于中考常考题型.22、x=-5【解析】试题分析:方程左右两边同时乘以(x+1)(x-1),解出x以后要验证是否为方程的增根.试题解析:3(x+1)+2x(x-1)=2(x+1)(x-1)3x+3+2x2-2x=2x2-2x=-5.经检验x=-5为原方程的解.点睛:掌握分式方程的求解.23、(1)c≤;(1)当c=1时,x1=1,x1=1;当c=1时,x1=,x1=【解析】

(1)先根据方程有两个实数根可知△≥0,由△≥0可得到关于c的不等式,求出c的取值范围即可;(1)由(1)中c的取值范围得出符合条件的c的正整数值,代入原方程,利用因式分解法或求根公式即可求出x的值.【详解】(1)解:∵方程有两个实根,∴△=b1-4ac=9-4c≥0,∴c≤;(1)解:∵c≤,且c为正整数,∴c=1或c=1.取c=1,方程为x1-3x+1=0,∴(x-1)(x-1)=0解得:x1=1,x1=1.也可如下:取c=1,方程为x1-3x+1=0,解得:x1=,x1=.【点睛】本题考查了根的判别式以及解一元二次方程.根据方程的特征熟练选择合适的解法是解答本题的关键.24、(1)a=5,b=﹣1;(2)y=x+;(3)直线L、x轴、直线y=2x+1围成的图形的面积为.【解析】

(1)把A,B的坐标代入解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论