版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
泸县一中2020级高三第二次诊断性模拟考试数学(理工类)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.本试卷满分150分,考试时间120分钟.考试结束后,请将答题卡交回.第I卷选择题(60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则().A B. C. D.2.若复数为纯虚数(为虚数单位),则实数的值为()A.1 B.0 C.1 D.1或13.某车间从生产的一批产品中随机抽取了1000个零件进行一项质量指标的检测,整理检测结果得此项质量指标的频率分布直方图如图所示,则下列结论错误的是()A.B.估计这批产品该项质量指标的众数为45C.估计这批产品该项质量指标中位数为60D.从这批产品中随机选取1个零件,其质量指标在的概率约为0.54.非零向量,满足向量+与向量的夹角为,下列结论中一定成立的是()A.= B.⊥ C.||=|| D.//5.已知函数,则()A.在上单调递增 B.的图象关于点对称C.为奇函数 D.的图象关于直线对称6.的展开式中的系数是()A.60 B.80 C.84 D.1207.已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列命题中错误的是()A.AE⊥平面PABB.直线PD与平面ABC所成角为45°C.平面PBC与平面PEF的交线与直线AD不平行D.直线CD与PB所成的角的余弦值为8.已知点是曲线C:y=+1上的点,曲线C在点P处的切线平行于直线6x﹣3y﹣7=0,则实数a的值为()A.﹣1 B.2 C.﹣1或2 D.1或﹣29.牛顿曾经提出了常温环境下的温度冷却模型:(为时间,单位分钟,为环境温度,为物体初始温度,为冷却后温度),假设一杯开水温度℃,环境温度℃,常数,大约经过多少分钟水温降为40℃?(结果保留整数,参考数据:)()A.9 B.8 C.7 D.610.已知在中,斜边,,若将沿斜边上的中线折起,使平面平面,则三棱锥的外接球的表面积为()A. B. C. D.11.已知双曲线的右焦点为,点,在双曲线的同一条渐近线上,为坐标原点.若直线平行于双曲线的另一条渐近线,且,,则该双曲线的渐近线方程为()A. B. C. D.12.已知点,,,平面区域是由所有满足(其中,)的点组成的区域,若区域的面积为,则的最小值为()A. B. C. D.第II卷非选择题(90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.计算的值为________.14.已知等差数列满足,则_________.15.函数满足:①定义域为R,②,③.请写出满足上述条件的一个函数,___________.16.如图,正方体中,点,是上的两个三等分点,点,是上的两个三等分点,点,,分别为,和的中点,点是上的一个动点,下面结论中正确的是___________.①与异面且垂直;②与相交且垂直;③平面;④,,,四点共面.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须答.第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.17.为配合创建文明城市,某市交警支队全面启动路口秩序综合治理,重点整治机动车不礼让行人的行为.经过一段时间的治理,从市交警队数据库中调取了10个路口的车辆违章数据,根据这10个路口的违章车次的数量绘制如下的频率分布直方图,数据中凡违章车次超过40次的路口设为“重点关注路口”.(1)根据直方图估计这10个路口违章车次的平均数;(2)现从支队派遣3位交警去违章车次在的路口执勤,每人选择一个路口,每个路口至多1人,设去“重点关注路口”的交警人数为X,求X的分布列及数学期望.18.如图,在三棱锥中,为直角三角形,,是边长为4的等边三角形,,二面角的大小为,点M为PA的中点.(1)请你判断平面PAB垂直于平面ABC吗?若垂直,请证明;若不垂直,请说明理由;(2)求CM与平面PBC所成角的正弦值.19.在中,内角,,的对边分别为,,,且.(1)求角大小;(2)若,求的取值范围.20.如图,为椭圆上的三点,为椭圆的上顶点,与关于轴对称,椭圆的左焦点,且.(1)求椭圆的标准方程;(2)过椭圆的右焦点且与轴不重合的直线交椭圆于两点,为椭圆的右顶点,连接分别交直线于两点.试判断的交点是否为定点?若是,请求出该定点;若不是,请说明理由.21.已知函数,,其中.(1)若方程在(为自然对数的底数)上存在唯一实数解,求实数的取值范围;(2)若在上存在一点,使得关于不等式成立,求实数的取值范围.(二)选做题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.选修44:坐标系与参数方程22.在直角坐标系中,曲线的参数方程为(为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英汉名词对比课件
- 2024年度企业资产重组保密协议3篇
- 服务管理技巧
- 公司股权分配的协议书范本2篇
- 教学志愿者培训课件
- 2024年度技术开发合同的技术要求与成果归属2篇
- 消化道病人的护理
- 铺砖施工劳务合同范本
- 物流线路承包合同
- 《政府采购法律培训》课件
- 《房颤的研究进展》课件
- 第二单元 参考活动2 做出正确的决定说课稿 -2024-2025学年初中综合实践活动苏少版八年级上册
- 大学生防艾健康教育学习通超星期末考试答案章节答案2024年
- 2024年军队文职人员统一招聘考试英语真题
- 大学生生涯发展展示 (修改)
- 电气工程师生涯人物访谈报告
- 血液透析中心人员岗位职责(共19篇)
- 常见疾病的艾灸处方
- (完整版)药物分析习题及答案(最新整理)
- 气体分离膜讲解
- 并网手续流程图
评论
0/150
提交评论