江苏省苏州市铁路中学2022-2023学年高二数学文期末试题含解析_第1页
江苏省苏州市铁路中学2022-2023学年高二数学文期末试题含解析_第2页
江苏省苏州市铁路中学2022-2023学年高二数学文期末试题含解析_第3页
江苏省苏州市铁路中学2022-2023学年高二数学文期末试题含解析_第4页
江苏省苏州市铁路中学2022-2023学年高二数学文期末试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市铁路中学2022-2023学年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是

()(A).

(B).

(C).

(D).

参考答案:A略2.下列说法错误的是(

)A.“”是“”的充要条件B.命题:关于的函数在[1,+∞)上是增函数,则C.命题:存在,使得,则:任意,都有D.命题“若,则”的逆否命题为“若,则”参考答案:A3.椭圆上任意一点到两焦点的距离分别为d1,d2,焦距为2c,若d1,2c,d2成等差数列,则椭圆的离心率为()A.

B.

C.

D.参考答案:A略4.等比数列中,公比,记(即表示数列的前项之积),,,,中值为正数的个数是(

)A.

B.

C.

D.参考答案:B略5.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得函数的最小正周期为

A.π

B.2π

C.4π

D.8π参考答案:C略6.若为有理数),则(

A.45

B.55

C.80

D.70参考答案:D略7.下列命题是真命题的是

(A)的充要条件

(B)的充分条件

(C)

(D)若为真命题,则为真参考答案:B8.已知实数满足,证明:.参考答案:证明:证法一,∴,,∴,.

……………2分∴,即,

……………4分∴,∴,

……………6分即,∴.

……………8分

略9.设是等差数列,是其前项和,且,则下列结论错误的是

参考答案:C10.若,使成立的一个充分不必要条件是A.

B.

C.

D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知直线l⊥平面α,直线m?平面β,则下列四个命题:①α∥β?l⊥m;②α⊥β?l∥m;③l∥m?α⊥β;④l⊥m?α∥β其中正确命题的序号是.参考答案:①③【考点】平面的基本性质及推论.【专题】计算题.【分析】直线l⊥平面α,直线m?平面β,当α∥β有l⊥m,当α⊥β有l∥m或l与m异面或相交,当l∥m有α⊥β,当l⊥m有α∥β或α∩β,得到结论【解答】解:直线l⊥平面α,直线m?平面β,当α∥β有l⊥m,故①正确当α⊥β有l∥m或l与m异面或相交,故②不正确当l∥m有α⊥β,故③正确,当l⊥m有α∥β或α∩β,故④不正确,综上可知①③正确,故答案为:①③【点评】本题考查平面的基本性质即推论,本题解题的关键是看出在所给的条件下,不要漏掉其中的某一种位置关系,本题是一个基础题.12.口袋内装有一些大小相同的红球、黄球和蓝球,从中摸出1个球,摸出红球的概率为0.42,摸出黄球的概率是0.28.若红球有21个,则蓝球有________个.参考答案:15【分析】根据红球的概率和个数求出总球数,从而求出篮球的个数.【详解】由题意摸出红球的概率为0.42,并且红球有21个,则总球数为个,所以蓝球的个数为个.所以本题答案为15.【点睛】本题考查概率等基础知识,考查概率的应用,考查运算求解能力,是基础题.13.若,则与的大小关系是

.参考答案:14.抛物线x2=4y的焦点坐标为

.参考答案:(0,1)【考点】抛物线的简单性质.【分析】由抛物线x2=4y的焦点在y轴上,开口向上,且2p=4,即可得到抛物线的焦点坐标.【解答】解:抛物线x2=4y的焦点在y轴上,开口向上,且2p=4,∴∴抛物线x2=4y的焦点坐标为(0,1)故答案为:(0,1)15.某人午觉醒来,发现表停了,他打开收信机,想听电台报时,则他等待的时间不超过分钟的概率为__________________.参考答案:略16.如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,若二面角A﹣BD﹣E与二面角E﹣BD﹣C′的大小分别为15°和30°,则=.参考答案:【考点】与二面角有关的立体几何综合题.【专题】综合题;压轴题;空间位置关系与距离.【分析】取BD的中点O,连接AO,EO,C′O,由题设知AOE=15°,∠EOC′=30°,由此利用正弦定理能求出.【解答】解:取BD的中点O,连接AO,EO,C′O,∵菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,∴C′O⊥BD,AO⊥BD,OC′=OA,∴BD⊥平面AOC′,∴EO⊥BD,∵二面角A﹣BD﹣E与二面角E﹣BD﹣C′的大小分别为15°和30°,∴∠AOE=15°,∠EOC′=30°,∵OC′=OA,∴∠OC′E=∠OAE,由正弦定理得,,∴,∴===.故答案为:.【点评】本题考查棱锥的结构特征,注意在翻折过程中哪些量发生了变化,哪些量没有发生变化;位于折线同侧的元素关系不变,位于折线两侧的元素关系会发生变化.17.已知向量,若,则______。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.参考答案:【考点】圆的标准方程;圆的切线方程.【专题】压轴题;直线与圆.【分析】(1)由勾股定理可得PQ2=OP2﹣OQ2=PA2,即(a2+b2)﹣1=(a﹣2)2+(b﹣1)2,化简可得a,b间满足的等量关系.(2)由于PQ==,利用二次函数的性质求出它的最小值.(3)设⊙P的半径为R,可得|R﹣1|≤PO≤R+1.利用二次函数的性质求得OP=的最小值为,此时,求得b=﹣2a+3=,R取得最小值为﹣1,从而得到圆的标准方程.【解答】解:(1)连接OQ,∵切点为Q,PQ⊥OQ,由勾股定理可得PQ2=OP2﹣OQ2.由已知PQ=PA,可得PQ2=PA2,即(a2+b2)﹣1=(a﹣2)2+(b﹣1)2.化简可得2a+b﹣3=0.(2)∵PQ====,故当a=时,线段PQ取得最小值为.(3)若以P为圆心所作的⊙P的半径为R,由于⊙O的半径为1,∴|R﹣1|≤PO≤R+1.而OP===,故当a=时,PO取得最小值为,此时,b=﹣2a+3=,R取得最小值为﹣1.故半径最小时⊙P的方程为+=.【点评】本题主要考查求圆的标准方程的方法,圆的切线的性质,两点间的距离公式以及二次函数的性质应用,属于中档题.19.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)当直线l的斜率为1时,求△POQ的面积;(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.参考答案:【考点】椭圆的标准方程;直线的斜率;直线与圆锥曲线的综合问题.【专题】压轴题.【分析】(1)设椭圆方程为.由两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,由此能够求出a,b,c的值,从而得到所求椭圆方程.(2)右焦点F(1,0),直线l的方程为y=x﹣1.设P(x1,y1),Q(x2,y2),由题设条件得.由此入手可求出.(3)假设在线段OF上存在点M(m,0)(0<m<1),使得以MP,MQ为邻边的平行四边形是菱形.因为直线与x轴不垂直,设直线l的方程为y=k(x﹣1)(k≠0).由题意知(1+2k2)x2﹣4k2x+2k2﹣2=0.由此可知.【解答】解:(1)由已知,椭圆方程可设为.∵两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,∴.所求椭圆方程为.(2)右焦点F(1,0),直线l的方程为y=x﹣1.设P(x1,y1),Q(x2,y2),由得3y2+2y﹣1=0,解得.∴.(3)假设在线段OF上存在点M(m,0)(0<m<1),使得以MP,MQ为邻边的平行四边形是菱形.因为直线与x轴不垂直,所以设直线l的方程为y=k(x﹣1)(k≠0).由可得(1+2k2)x2﹣4k2x+2k2﹣2=0.∴..其中x2﹣x1≠0以MP,MQ为邻边的平行四边形是菱形?(x1+x2﹣2m,y1+y2)(x2﹣x1,y2﹣y1)=0?(x1+x2﹣2m)(x2﹣x1)+(y1+y2)(y2﹣y1)=0?(x1+x2﹣2m)+k(y1+y2)=0?2k2﹣(2+4k2)m=0.∴.【点评】本题考查圆锥曲线的位置关系,解题时要认真审题,仔细解答.20.(本小题满分13分)已知ΔABC的三边方程是AB:,BC:CA:,(1)求∠A的大小.(2)求BC边上的高所在的直线的方程.参考答案:解:由题意知、、……3分(1)由到角公式的tanA=

…………6分∴

………………7分(2)设BC边上的高所在的直线的斜率为,则∵BC边上的高所在的直线与直线BC垂直

即∵

∴点A的坐标为

…………………9分代入点斜式方程得

…………13分21.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴和y轴上截距相等,求切线的方程;(2)若M(m,n)为圆C上任意一点,求的最大值与最小值;(3)从圆C外一点P(x,y)向圆引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求当|PM|最小时的点P的坐标.参考答案:【考点】直线与圆锥曲线的综合问题.【专题】综合题;直线与圆.【分析】(1)圆C的切线在x轴和y轴上截距相等时,切线过原点或切线的斜率为﹣1;当切线过原点时,设切线方程为:y=kx,当切线的斜率为﹣1时,设切线方程为:x+y+b=0,由相切可得方程,解出即可;(2)设k=,则k表示直线MA的斜率,其中A(1,﹣2)是定点,可知直线MA与圆有公共点,从而可得,解出即可;(3)由两点间距离公式及切线长公式,可把|PM|=|PO|化为(x+1)2+(y﹣2)2﹣2=x2+y2,化简可得x=2y﹣,从而PM|=|PO|=,可化为关于y的函数,借助二次函数的性质可求;【解答】解:圆C的方程为:(x+1)2+(y﹣2)2=2,(1)圆C的切线在x轴和y轴上截距相等时,切线过原点或切线的斜率为﹣1;当切线过原点时,设切线方程为:y=kx,相切则:,得;当切线的斜率为﹣1时,设切线方程为:y+x+b=0,由相切得:,得b=1或b=﹣3;故所求切线方程为:或;或x+y+1=0,或x+y﹣3=0.(2)设k=,则k表示直线MA的斜率,其中A(1,﹣2)是定点,∵M(m,n)在圆C,∴圆C与直线MA有公共点,而直线MA的方程为:y+2=k(x﹣1),则有:C点到直线MA的距离不大于圆C的半径即:,解得:﹣7≤k≤﹣1,∴的最大值为﹣1,最小值为﹣7.(3)由圆的切线长公式可得|PM|2=|PC|2﹣R2=(x+1)2+(y﹣2)2﹣2,由|PM|=|PO|得,(x+1)2+(y﹣2)2﹣2=x2+y2,即2x﹣4y+3=0,即x=2y﹣,此时|PM|=|PO|====,∴当y=即P(,)时,|PM|最小.【点评】该题考查圆的方程、性质,考查直线与圆的位置关系,考查与圆有关的最值问题,考查转化思想.22.已知函数,其中k∈R且k≠0.(1)求函数f(x)的单调区间;(2)当k=1时,若存在x>0,使1nf(x)>ax成立,求实数a的取值范围.参考答案:【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)求导函数,对k讨论,利用导数的正负,可得函数的单调区间;(2)分离参数,构造新函数,g(x)=(x>0),存在x>0,使1nf(x)>ax成立,等价于a<g(x)max,由此可求实数a的取值范围.【解答】解:(1)函数的定义域为R,求导函数可得f′(x)=当k<0时,令f′(x)>0,可得x<0或x>2;令f′(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论