2023-2024学年广东省江门市高二年级上册期中数学模拟试题(含解析)_第1页
2023-2024学年广东省江门市高二年级上册期中数学模拟试题(含解析)_第2页
2023-2024学年广东省江门市高二年级上册期中数学模拟试题(含解析)_第3页
2023-2024学年广东省江门市高二年级上册期中数学模拟试题(含解析)_第4页
2023-2024学年广东省江门市高二年级上册期中数学模拟试题(含解析)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广东省江门市高二上册期中数学模拟试题

一、单选题

1.如图,在空间四边形P4BC中,PA+AB-CB=()

A.PCB.PAC.ABD.AC

【正确答案】A

【分析】利用空间向量加减法法则直接运算即可.

【详解】根据向量的加法、减法法则得":"方二";加二二pd

故选:A.

2.直线x-®+l=0的倾斜角为()

A.30°B.45°C.120°D.150°

【正确答案】A

【分析】将直线的一般式改写成斜截式,再由斜率公式%=tan0可求得结果.

【详解】同+1=0

.石小

・・y=——xd-----

33

.心粗a

••k=——=tanU

3

又・・・6w[0㈤

.・・e=3()/

故选:A.

3.己知空间向量:二(2,-3,0),,二(加若2则实数”的值为()

A.-2B.-1C.1D.2

【正确答案】A

【分析】由九(六耳,得二(六@=0,列方程求解即可

【详解】因为:二(2,-3,0),二(叽3,-1),

所以m(2+/«,0,-l),

,、,、,、

又“_L(a+b),

,、,、,、

所以。・(。+6)=2(2+加)=0,得掰=一2,

故选:A.

.uuur'i

4.在棱长均为1的平行六面体ABCD-ABGR中,ABAD=ZBAA}=ZDAA1=60°,则卜G卜

()

A.VJB.3C.y/6D.6

【正确答案】C

【分析】设N8=a,AD=b,44=c,利用,J=J(a+6+c)2结合数量积的运算即可得

到答案.

.一•————

【详解】设48=Q,AD=b,44]=。,由已知,得<〃,c>=60",<c,b>=60^,

.................XX1

[a[=|b|=|c|=1,所以QC==d=5,

.1uuiTi~~r~~r—[T2~~IIr-rFTT~T

月f以卜G=J(a+b+c)2=5/4+b+c+2a-b+2a-c+2b-c=yj6.

故选:C

5.已知圆/+/+m+或+/=0的圆心坐标为(一2,3),D,E分别为()

A.4,-6B.—4,16C.—4,6D.4,6

【正确答案】A

nF

【分析】由题得=-2,-1=3,解之即得D,E的值.

【详解】圆x2+y2+Dx+Ey+F:=:0的圆心(-微',-《),

nF

又已知该圆的圆心坐标为(一2,3),所以-卜-2,-1=3.

所以D=4,E=-6.

故答案为A

本题主要考查圆的一般式方程,意在考查学生对这些知识的掌握水平和分析推理能力.

6.在平面直角坐标系X0F中,点(3,1)关于直线x-y+l=0的对称点为()

A.(4,0)B.(0,4)C.(2,-1)D.(-1,2)

【正确答案】B

【分析】设对称点为G〃,〃),由(加,〃)与点(3,1)所在的直线垂直于》-卜+1=0且中点在直线

X-y+l=0上列方程组即可求解.

【详解】设对称点为(机,〃),

41=7

加一;,,解得m=0/、

由题意可得〃=4,即对称点为(0,4),

m+3〃+11八

---------------+1=0

22

故选:B.

7.两平行直线x+2y-l=0与2x+4y+3=0的品巨离为()

A.—y/sB.史~C.--\/5D.yjs

525

【正确答案】B

【分析】根据给定条件利用平行线间距离公式直接计算即可得解.

5节

【详解】直线x+2y-l=0化为:2x+4y-2=0,于是得d=

所以两平行直线x+2Z=。与2l+4尸3=。的距离为条

故选:B

8.以N(l,3),8(-5,I)为端点的线段的垂直平分线方程是()

A.3x-y+8=0B.3x+y+4=0C.3x-_y+6=0D.3x+y+2=0

【正确答案】B

【分析】求出线段Z8的中点及直线N8的斜率,根据垂直关系求得垂直平分线的斜率,进

而得解.

【详解】线段的中点为(与,=(-2,2),直线的斜率为38=吉==;,

12匕)1一(一>J

故所求垂直平分线的斜率4=-3,可得直线方程为y-2=-3(x+2),即3x+y+4=0.

故选:B

9.以4(5,5),5(1,4),C(4,1)为顶点的三角形是

A.直角三角形B.等腰三角形

C.等边三角形D.等腰直角三角形

【正确答案】B

【详解】由两点间的距离公式求得:\AB\=\AC\=y[i7,\BC\=3y/2,

故△/8C为等腰三角形.

故选:B.

22

10.下列与椭圆C:工+二=1焦点相同的椭圆是()

95

.x2y2x2y2x2y2c//

A.----1=1B.—।—=1C.1-----=1D.—i---=1

5910594106

【正确答案】D

【分析】由椭圆的简单几何性质:“焦点跟着大的走“,椭圆C的焦点在x轴上,且

c^ai-b2=9-5=4,得出椭圆C的焦点坐标为:(±2,0),依次判断各个选项即可.

【详解】由题意得,椭圆C中/=9,加=5,。2=/一〃=4即焦点坐标为(2,0)和(-2,0);

对于A选项,椭圆焦点在V轴上,不满足题意;

对于B选项,椭圆焦点在x轴上,/=io,加=5,c2=a2_h2=5t不满足题意;

对于C选项,椭圆焦点在x轴上,。2=9,/=4,/=/-62=5不满足题意;

对于D选项,椭圆焦点在x轴上,(72_10>b2-6<c2=a2—b2=4>满足题意:

故D.

11.直线自一了+1-3A=0当上变化时,所有的直线恒过定点()

A.(1,3)B.(-1,-3)

C.(3,1)D.(-3,-1)

【正确答案】C

|x-3=0

【分析】先分离参数得到(x-3)k+l-y=0,再解方程组,八即得直线所经过的定点.

[l-y=0

【详解】由题得(x-3)k+l-y=0,所以解之得x=3,y=l,所以直线过定点(3,1).

[1-丁=。

故答案为C

(1)本题主要考查直线的定点问题,意在考查学生对该知识的掌握水平和分析推理能力.(2)直

线的定点问题,方法一:参数赋值法,给直线中的参数赋两个值,得到两个方程,再解方程组

得到方程组的解,即是直线过的定点,最后要把点的坐标代入直线的方程证明,发现直线的

方程恒成立.方法二:分离参数法,把直线的方程分离参数得到/(x,y)外+g(x,j,)2+A=0,所

7(")=0

以g(x,y)=0,解之得定点的坐标.

k=Q

12.若x、y满足N+产-2x+4y—20=0,则N+y2的最小值是()

A.>/?-5B.5--75

C.30-10^D.无法确定

【正确答案】C

【详解】由/+产一2%+令一20=0得(x-l)2+(y+2)2=25,设圆心C(由2),则N+十的最

小值是(|。。-5尸=(5-52=3o-io£,选c.

点睛:与圆上点(xj)有关代数式的最值的常见类型及解法.①形如"=上心型的最值问题,

x-a

可转化为过点和点(xj)的直线的斜率的最值问题;②形如仁办+如型的最值问题,可

转化为动直线的截距的最值问题;③形如(x-4>+(y-b)2型的最值问题,可转化为动点到

定点(a,为的距离平方的最值问题.

二、填空题

13.已知向量2(2,-3,1),,二(2,0,3),则.

【正确答案】7

【分析】利用空间向量数量积的坐标运算即可求解.

【详解】因为。=(2,-3,1))=(2,0,3),贝!J2x2+(-3)x0+lx3=7,

故答案为.7

14.已知经过两点工(-1,1),8(4,a)的直线的斜率为1,则a的值为.

【正确答案】6

【分析】根据经过两点的直线斜率计算公式即可求的参数a.

【详解】由题意可知£二=1,解得4=6.

4+1

故6.

15.已知圆A:x2+y2=4,圆8:(x-3)~+(y-4)~=r2(r>0),若圆A与圆8中有且仅有

一个交点,则r的值是.

【正确答案】7或3

【分析】根据题意可得:两圆相切,分为内切和外切,利用圆心距和两圆的半径关系即可求

解.

【详解】因为圆A与圆B有且仅有一个交点,所以圆A:f+/=4与

圆B:(x-3)~+(y-4/=/(r>0)相切.圆心距.8=J32+42=5,

当两圆内切时:5=|r-2|,解得:r=7;

当两圆外切时:5=|r+2|,解得:r=3,

所以,•的值为7或3,

故7或3.

16.已知2(0,-1),点B在直线x-y+2=0上,若直线48平行于直线x+2y-3=0,则B点

坐标为.

【正确答案】(-2,0).

【分析】首先求出过点A与直线x+2y-3=0平行的直线方程,两直线的交点坐标即为点B;

【详解】解:因为直线平行于直线x+2y-3=0,

所以设直线方程为x+2y+/n=0,又点在直线上,

所以0+2x(-l)+m=0,解得机=2,所以直线方程为x+2y+2=0

[x-y+2=0[x=-2/、

联立两直线方程,、c解得故8点坐标为-2,0

[x+2y+2=0[_V=n0

故(-2,0)

本题考查两直线的交点坐标及与已知直线平行的直线方程,属于基础题.

17.过直线x+y=2与直线x-y=0的交点,圆心为C(T,1)的圆的标准方程是.

【正确答案[(x+l)2+g)2=4

【分析】先求出两直线的交点坐标,再求这点到圆心的距离就是半径,从而可求出圆的标准

方程

X4-V=2X=1

【详解】由得

所以直线x+y=2与直线x-y=O的交点为(1,1),

所以圆的半径为+(1-1)2=2,

所以所求圆的标准方程为(X+1)2+3-1)2=4,

故(X+l)2+g)2=4

18.设椭圆C:捷+r=1(“>6>0)的左、右焦点分别为耳,

,P是C上的点,尸耳,耳居,

4PF】F'=45/,则C的离心率为.

【正确答案】V2-l##-l+V2

【分析】根据等腰直角三角形性质及勾股定理,得出尸耳、、F、F2,根据椭圆的定义以

及离心率公式求解即可.

【详解】在放尸石耳中,设片工=2c,

因为NP片乙=45",所以改=2c,PF2=2y/2c,

所以2°=尸耳+尸6=2c+26c

2c2c式[

故"工=或酝.

故答案为.0-1

三、解答题

19.已知直线/:3x+4y-7=0.

(1)求直线/的斜率和在y轴上的截距;

(2)若直线"?与/垂直,且过点尸(-2,5),求机的方程.

【正确答案】(1)斜率为-:3;截距为7:

44

⑵4x-3y+23=0

【分析】(1)将直线方程化为斜截式,可得答案;

(2)根据两直线垂直,斜率之积为・1,可得直线加的斜率,可写出直线的点斜式方程,化

为一般式即可.

37

【详解】(1)由/:3尤+4歹-7=0可得y=

44

37

.•.斜率为-W;在y轴上的截距为a.

(2)由直线机与/垂直得A=g,且过点尸(-2,5),

可得加的方程为y-5=g(x+2),整理得4x-3y+23=0

20.已知圆G:—2y—4=0,圆C2:x,+/—4x+2y=0.

(i)分别将圆G和圆c?的方程化为标准方程,并写出它们的圆心坐标和半径;

(2)求圆G与圆Q的公共弦所在的直线方程及公共弦长.

【正确答案】(DG的圆心为(0』),半径为石,c2的圆心为(2,-1),半径为正

(2)273

【分析】(1)配方得到圆的标准方程,得到圆心和半径;

(2)两圆相减得到公共弦所在直线方程,利用点到直线距离公式和垂径定理得到弦长.

【详解】(1)G:x2+/-2y-4=0变形为犬+(>-1)2=5,圆心为(0,1),半径为石,

G:x2+/-4x+2y=0变形为(x-2y+(y+l)2=5,圆心为(2,T),半径为石;

(2)G:X?+_/-2y-4=0与C?:X?+/-4x+2y=0相减得至怯共弦所在直线方程,

即—2歹—4+4x—2y=0,整理得:x—y—1=0,

圆心(0,1)到直线x-y-l=0的距离为d-y/2,

VT+T

故公共弦长为245-3=2xj5-2=2百.

21.已知三点三2,0),B(l,3),C(2,2)在圆C上,直线/:3x+y-6=0,

(1)求圆C的方程;

(2)判断直线/与圆C的位置关系;若相交,求直线/被圆C截得的弦长.

【正确答案】⑴x2+/-2y-4=0

(2)直线/与圆C相交,弦长为亚

【分析】(1)圆C的方程为:9+年+m+切+尸=o,再代入/(2,0),8(1,3),C(2,2)求解即可;

(2)先求解圆心到直线的距离可判断直线/与圆C相交,再用垂径定理求解弦长即可

【详解】(1)设圆C的方程为:/+/+瓜+切+尸=0,

'20+尸+4=0

由题意得:[。+3«+尸+10=0,

2£)+2£+F+8=0

fD-3E=6fD=0

消去产得:八一,,解得:„。,

[-£>+£=-2[E=-2

AF=-4,

.,.圆C的方程为:一+/一2尸4=0.

(2)由(1)知:圆C的标准方程为:/+(,—1)2=5,圆心C(0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论