2024届陕西省扶风县数学八年级下册期末质量检测模拟试题含解析_第1页
2024届陕西省扶风县数学八年级下册期末质量检测模拟试题含解析_第2页
2024届陕西省扶风县数学八年级下册期末质量检测模拟试题含解析_第3页
2024届陕西省扶风县数学八年级下册期末质量检测模拟试题含解析_第4页
2024届陕西省扶风县数学八年级下册期末质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省扶风县数学八年级下册期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在▱ABCD中,已知∠A=60°,则∠C的度数是()A.30° B.60° C.120° D.60°或120°2.已知m=,n=,则代数式的值为()A.3 B.3 C.5 D.93.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A.-1 B.-+1 C. D.-4.如图,天平右盘中的每个砝码的质量都是,则物体的质量的取值范围,在数轴上可表示为()A. B.C. D.5.六边形的内角和为()A.720° B.360° C.540° D.180°6.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.10 D.127.菱形具有而平行四边形不具有的性质是()A.对角线互相垂直 B.对边平行C.对边相等 D.对角线互相平分8.已知正比例函数的函数值随的增大而减小,则一次函数的图象大致是()A. B. C. D.9.直线=与直线y2=2x在同一平面直角坐标系中的图象如图所示,则不等式y1≤y2的解集为()A.x≤﹣1 B.x≥﹣1 C.x≤﹣2 D.x≥﹣210.(2016山西省)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH二、填空题(每小题3分,共24分)11.往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________12.已知不等式组的解集是,则的值是的___.13.分解因式:______.14.将正比例函数y=-x的图象向上平移,则平移后所得图象对应的函数解析式可能是______________(答案不唯一,任意写出一个即可).15.如图,四边形是边长为4的正方形,点E在边上,PE=1;作EF∥BC,分别交AC、AB于点G、F,M、N分别是AG、BE的中点,则MN的长是_________.16.方程x3+8=0的根是_____.17.现有甲、乙两支足球队,每支球队队员身高的平均数均为1.85米,方差分别为,,则身高较整齐的球队是__队18.将直线y=2x向下平移2个单位,所得直线的函数表达式是_____.三、解答题(共66分)19.(10分)某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班同学捐款情况,并绘制出如下的统计表和统计图:捐款(元)2050100150200人数(人)412932求:(Ⅰ)m=_____,n=_____;(Ⅱ)求学生捐款数目的众数、中位数和平均数;(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?20.(6分)如图,在四边形ABCD中,AD⊥CD,BC⊥CD,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F。证明:(1)FC=AD;(2)AB=BC+AD。21.(6分)如图,将矩形ABCD沿EF折叠,使点C恰好落在AB边的中点C'上,点D落在D'处,C'D'交AE于点M.若AB=6,22.(8分)如图1,直线l1:y=﹣12x+3与坐标轴分别交于点A,B,与直线l2(1)求A,B两点的坐标;(2)求△BOC的面积;(3)如图2,若有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.①当OA=3MN时,求t的值;②试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?若存在,请直接写出t的值;若不存在,请说明理由.23.(8分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了两种玩具,其中类玩具的金价比玩具的进价每个多元.经调查发现:用元购进类玩具的数量与用元购进类玩具的数量相同.(1)求的进价分别是每个多少元?(2)该玩具店共购进了两类玩具共个,若玩具店将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得的利润不少于元,则该淘宝专卖店至少购进类玩具多少个?24.(8分)已知直线y1=mx+3n﹣1与直线y1=(m﹣1)x﹣1n+1.(1)如果m=﹣1,n=1,当x取何值时,y1>y1?(1)如果两条直线相交于点A,A点的横坐标x满足﹣1<x<13,求整数n的值.25.(10分)解不等式组:,并把解集在数轴上表示出来.26.(10分)如图,△ABC与△A′B′C′是位似图形,且位似比是1:1.(1)在图中画出位似中心点O;(1)若AB=1cm,则A′B′的长为多少?

参考答案一、选择题(每小题3分,共30分)1、B【解析】

由平行四边形的对角相等即可得出答案.【详解】∵四边形ABCD是平行四边形,∴∠C=∠A=60°;故选:B.【点睛】本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等是解题的关键.2、B【解析】

由已知可得:,=.【详解】由已知可得:,原式=故选:B【点睛】考核知识点:二次根式运算.配方是关键.3、A【解析】

先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A之间的距离,进而可求出点A表示的数.【详解】数轴上正方形的对角线长为:,由图中可知-1和A之间的距离为.∴点A表示的数是-1.故选A.【点睛】本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.4、A【解析】∵由图可知,1g<m<2g,∴在数轴上表示为:。故选A..5、A【解析】

根据多边形内角和公式,即可求出.【详解】根据多边形内角和公式,六边形内角和故选A.【点睛】本题考查多边形内角和问题,熟练掌握公式是解题关键.6、C【解析】

由平行四边形的性质得出DC=AB=4,AD=BC=1,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【详解】∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=1.∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=1+4=2.故选C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.7、A【解析】

根据菱形及平行四边形的性质,结合选项即可得出答案.【详解】A、对角线互相垂直是菱形具有,平行四边形不具有的性质,故本选项正确;B、对边平行是菱形和平行四边形都具有的性质,故本选项错误;C、对边相等是菱形和平行四边形都具有的性质,故本选项错误;D、对角线互相平分是菱形和平行四边形都具有的性质,故本选项错误.故选A.【点睛】此题考查了平行四边形及菱形的性质,属于基础题,关键是熟练掌握特殊图形的基本性质.8、B【解析】

根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:正比例函的函数值随的增大而减小,,一次函数的一次项系数大于0,常数项小于0,一次函数的图象经过第一、三象限,且与轴的负半轴相交.故选:.【点睛】本题考查正比例函数的性质和一次函数的图象,解题的关键是熟练掌握正比例函数的性质和一次函数的图象.9、B【解析】

直接根据两函数图象的交点坐标即可得出结论.【详解】∵由函数图象可知,当x≥-1时,直线y1=在直线y2=2x的下方,

∴不等式y1≤y2的解集为x≥-1.

故选:B.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象直接得出不等式的解集是解答此题的关键.10、D【解析】

先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.【详解】解:设正方形的边长为2,则CD=2,CF=1

在直角三角形DCF中,∴矩形DCGH为黄金矩形

故选:D.【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.二、填空题(每小题3分,共24分)11、【解析】

求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.【详解】设最小正方形的边长为1,则小正方形边长为2,阴影部分面积=2×2×4+1×1×2=18,白色部分面积=2×2×4+1×1×2=18,故石子落在阴影区域的概率为.故答案为:.【点睛】本题考查了概率,正确运用概率公式是解题的关键.12、-2【解析】

先求出两个不等式的解集,再求其公共解,然后根据不等式组的解集列出求出a、b的值,再代入代数式进行计算即可得解.【详解】,由①得,,由②得,,所以,不等式组的解集是,不等式组的解集是,,,解得,,所以,.故答案为:.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13、【解析】

根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;先提公因式,再套用完全平方公式即可求解.【详解】,=,=,故答案为:.【点睛】本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.14、y=-x+1【解析】

根据平面坐标系中函数图像的平移规律“左加右减,上加下减”可知,当平移1个单位时,平移后的函数解析式为y=-x+1.【详解】由题意得:y=-x的图像向上平移,得到y=-x+1,故本题答案是y=-x+1.【点睛】本题主要考查图形的平移和一次函数的图像性质,学生掌握即可.15、2.5【解析】

先判断四边形的形状,再连接,利用正方形的性质得出是等腰直角三角形,再利用直角三角形的性质得出即可.【详解】∵四边形是边长为4的正方形,,∴四边形是矩形,∵,∴,连接,如图所示:∵四边形是正方形,∴,是等腰直角三角形,∵是的中点,即有,∴,是直角三角形,又∵是中点,,∵∴,故答案为:.【点睛】本题考查了正方形的性质,矩形的判定,等腰三角形和直角三角形的性质,解题的关键在于合理作出辅助线,通过直角三角形的性质转化求解.16、x=﹣1【解析】

把方程变形为形为x3=−8,利用立方根求解即可【详解】解:方程可变形为x3=﹣8,因为(﹣1)3=﹣8,所以方程的解为x=﹣1.故答案为:x=﹣1【点睛】此题考查立方根,解题关键在于掌握运算法则17、乙【解析】

根据方差的定义,方差越小数据越稳定即可得出答案.【详解】解:两队队员身高平均数均为1.85米,方差分别为,,,身高较整齐的球队是乙队;故答案为:乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18、y=1x﹣1.【解析】

解:根据一次函数的平移,上加下减,可知一次函数的表达式为y=1x-1.三、解答题(共66分)19、4030【解析】分析:(Ⅰ)把表格中的数据相加得出本次接受随机抽样调查的学生人数;利用50元,100元的捐款人数求得占总数的百分比得出的数值即可;

(Ⅱ)利用众数、中位数和平均数的意义和求法分别得出答案即可;

(Ⅲ)利用求得的平均数乘总人数得出答案即可.详解:(Ⅰ)本次接受随机抽样调查的学生人数为4+12+9+3+2=30人.12÷30=40%,9÷30=30%,所以扇形统计图中的故答案为40,30;(Ⅱ)∵在这组数据中,50出现了12次,出现的次数最多,∴学生捐款数目的众数是50元;∵按照从小到大排列,处于中间位置的两个数据都是50,∴中位数为50元;这组数据的平均数=(20×4+50×12+100×9+150×3+200×2)÷30=2430÷30=81(元).(Ⅲ)根据题意得:2500×81=202500元答:估计该校学生共捐款202500元.点睛:本题考查扇形统计图,用样本估计总体,加权平均数,中位数,众数等,熟练掌握各个概念是解题的关键.20、(1)见解析;(2)见解析【解析】

(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【详解】(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点睛】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.21、AM=9【解析】

先根据勾股定理求出BF,再根据△AMC′∽△BC′F求出AM即可.【详解】解:根据折叠的性质可知,FC=FC′,∠C=∠FC′M=90°,设BF=x,则FC=FC′=9-x,∵BF2+BC′2=FC′2,∴x2+32=(9-x)2,解得:x=4,即BF=4,∵∠FC′M=90°,∴∠AC′M+∠BC′F=90°,又∵∠BFC′+BC′F=90°,∴∠AC′M=∠BFC′,∵∠A=∠B=90°,∴△AMC′∽△BC′F,∴A∵BC′=AC′=3,∴AM=94【点睛】本题主要考查了折叠的性质,矩形的性质,相似三角形的判定与性质,能够发现△AMC′∽△BC′F是解决问题的关键.22、(1)A(6,0)B(0,3);(2)S△OBC=3;(3)①t=83或163;②t=(6+22)s或(6﹣2【解析】

(1)利用待定系数法即可解决问题;(2)构建方程组确定点C坐标即可解决问题;(3)根据绝对值方程即可解决问题;(4)分两种情形讨论:当OC为菱形的边时,可得Q1-22,0,Q222,0,Q【详解】(1)对于直线y=-12x+3,令x=0得到y=3,令A(6,0)B(0,3).(2)由y=-12x+3∴C(2,2),∴S△(3)①∵M6-t,-∴MN=|-1∵OA=3MN,∴6=3|3解得t=83或16②如图3中,由题意OC=22当OC为菱形的边时,可得Q1(﹣22,0),Q2(22,0),Q4(4,0);当OC为菱形的对角线时,Q3(2,0),∴t=(6+22)s或(6﹣22)s或2s或4s时,以O、Q、C、P为顶点的四边形构成菱形.【点睛】本题考查一次函数综合题、三角形的面积、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考压轴题.23、(1)的进价是元,的进价是元;(2)至少购进类玩具个.【解析】

(1)设的进价为元,则的进价为元,根据用元购进类玩具的数量与用元购进类玩具的数量相同这个等量关系列出方程即可;(2)设玩具个,则玩具个,结合“玩具点将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得利润不少于元”列出不等式并解答.【详解】解:(1)设的进价为元,则的进价为元由题意得,解得,经检验是原方程的解.所以(元)答:的进价是元,的进价是元;(2)设玩具个,则玩具个由题意得:解得.答:至少购进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论