2024届山东省青岛市崂山区部分中学数学八年级下册期末质量检测模拟试题含解析_第1页
2024届山东省青岛市崂山区部分中学数学八年级下册期末质量检测模拟试题含解析_第2页
2024届山东省青岛市崂山区部分中学数学八年级下册期末质量检测模拟试题含解析_第3页
2024届山东省青岛市崂山区部分中学数学八年级下册期末质量检测模拟试题含解析_第4页
2024届山东省青岛市崂山区部分中学数学八年级下册期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省青岛市崂山区部分中学数学八年级下册期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同。设甲每天加工服装x件。由题意可得方程()A. B.C. D.2.在下列四个标志中,既是中心对称又是轴对称图形的是()A. B. C. D.3.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.-2 C.4 D.-44.下列命题正确的是()A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形5.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+26.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠27.如图,点A1、B1、C1分别为△ABC的边BC、CA、AB的中点,点A2、B2、C2分别为△A1B1C1的边B1C1、C1A1、A1B1的中点,若△ABC的面积为1,则△A2B2C2的面积为()A. B. C. D.8.在比例尺为1∶5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地间的实际距离是()A.1250km B.125km C.12.5km D.1.25km9.如图,△ABC为直角三角形,∠C=90°,AC=6,BC=8,以点C为圆心,以CA为半径作⊙C,则△ABC斜边的中点D与⊙C的位置关系是()A.点D在⊙C上 B.点D在⊙C内C.点D在⊙C外 D.不能确定10.化简的结果是()A.3 B.2 C.2 D.211.若点P(1-m,-3)在第三象限,则m的取值范围是()A.m<1 B.m<0 C.m>0 D.m>112.二次根式中,字母a的取值范围是()A.a<﹣ B.a>﹣ C.a D.a二、填空题(每题4分,共24分)13.若代数式在实数范围内有意义,则x的取值范围是_____.14.已知点P(3,﹣1)关于y轴的对称点Q的坐标是_____________.15.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是________.16.把长为20,宽为a的长方形纸片(10<a<20),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的长方形为正方形,则操作停止.当n=3时,a的值为________.17.如图,,的垂直平分线交于点,若,则下列结论正确是______(填序号)①②是的平分线③是等腰三角形④的周长.18.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为_____三、解答题(共78分)19.(8分)解不等式组.20.(8分)化简或解方程:(1)化简:(2)先化简再求值:,其中.(3)解分式方程:.21.(8分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:(1)△ACE≌△BCD;(2).22.(10分)在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上.(1)如图1,当菱形DEFG的一顶点F在AB边上.①若CG=OD时,求直线DG的函数表达式;②求证:OED≌BGF.(2)如图2,当菱形DEFG的一顶点F在AB边右侧,连接BF,设CG=a,FBG面积为S.求S与a的函数关系式;并判断S的值能否等于1?请说明理由;(3)如图3,连接GE,当GD平分∠CGE时,m的值为.(直接写出答案).23.(10分)河南某校招聘干部一名,对、、三人进行素质测试,他们各项成绩如下表:将语言、综合知识、创新和处理问题能力按测试成绩、、、比例计算,谁将被录用?测试项目测试成绩语言综合知识创新处理问题能力24.(10分)计算:﹣3+2.25.(12分)某项工程由甲乙两队分别单独完成,则甲队用时是乙队的1.5倍:若甲乙两队合作,则需12天完成,请问:(1)甲,乙两队单独完成各需多少天;(2)若施工方案是甲队先单独施工天,剩下工程甲乙两队合作完成,若甲队施工费用为每天1.5万元,乙队施工费为每天3.5万元求施工总费用(万元)关于施工时间(天)的函数关系式(3)在(2)的方案下,若施工期定为15~18天内完成(含15和18天),如何安排施工方案使费用最少,最少费用为多少万元?26.某中学开学初到商场购买A.B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元.已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)学校为了响应“足球进校园”的号召,决定再次购进A.B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A.B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同,列出相应的方程,本题得以解决.【详解】解:由题意可得,,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.2、C【解析】

根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【详解】解:A、不是中心对称图形,是轴对称图形,故本选项不合题意;

B、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;

C、既是中心对称图形又是轴对称图形,故本选项符合题意;

D、不是中心对称图形,是轴对称图形,故本选项不合题意.

故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【解析】

先设报3的人心里想的数为x,利用平均数定义表示报5的人心里想的数;报7的人心里想的数;报9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.【详解】设报3的人心里想的数是x∵报3与报5的两个人报的数的平均数是4∴报5的人心里想的数应该是8-x于是报7的人心里想的数应该是12-(8-x)=4+x报9的人心里想的数应该是16-(4+x)=12-x报1的人心里想的数应该是20-(12-x)=8+x报3的人心里想的数应该是4-(8+x)=-4-x所以x=-4-x,解得x=-2故答案选择B.【点睛】本题属于阅读理解和探查规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.4、D【解析】试题分析:A.对角线互相垂直的四边形不一定是菱形,故本选项错误;B.一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;C.对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;D.对角线互相垂直平分且相等的四边形是正方形,故本选项正确.故选D.考点:命题与定理.5、B【解析】试题分析:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选B.考点:一次函数图象与几何变换6、D【解析】

解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.【详解】=1,解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2,故选D.【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.7、D【解析】

由于A1、B1、C1分别是△ABC的边BC、CA、AB的中点,就可以得出△A1B1C1∽△ABC,且相似比为,面积比为,就可求出△A1B1C1的面积=,同样的方法得出△A2B2C2的面积=.【详解】解:∵A1、B1、C1分别是△ABC的边BC、CA、AB的中点,∴A1B1、A1C1、B1C1是△ABC的中位线,∴△A1B1C1∽△ABC,且相似比为,∴S△A1B1C1:S△ABC=1:4,且S△ABC=1,∴S△A1B1C1=.∵A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,∴△A1B1C1∽△A2B2C2且相似比为,∴△A2B2C2的面积=×S△A1B1C1=.故选:D.【点睛】本题考查了三角形中位线定理的运用,相似三角形的判定与性质的运用.根据中位线定理得出三角形相似是解决此题的关键.8、D【解析】试题分析:比例尺的定义:比例尺=图上距离∶实际距离.由题意得甲、乙两地的实际距离,故选D.考点:比例尺的定义点评:本题属于基础应用题,只需学生熟练掌握比例尺的定义,即可完成.9、B【解析】根据勾股定理,由△ABC为直角三角形,∠C=90°,AC=6,BC=8,求得AB=10,然后根据直角三角形的的性质,斜边上的中线等于斜边长的一半,即CD=5<AC=6,所以点D在在⊙C内.故选B.10、A【解析】

直接利用二次根式的性质化简得出答案.【详解】.故选A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.11、D【解析】

根据第三象限内点的横坐标是负数列不等式求解即可.【详解】解:∵点P(1−m,−3)在第三象限,∴1−m<0,解得m>1.故选D.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).12、B【解析】

根据二次根式以及分式有意义的条件即可解答.【详解】根据题意知2a+1>0,解得:a>﹣,故选B.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式与分式有意义的条件,本题属于基础题型.二、填空题(每题4分,共24分)13、x≤【解析】∵代数式在实数范围内有意义,∴,解得:.故答案为:.14、(-3,-1)【解析】

根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.【详解】解:∵点Q与点P(3,﹣1)关于y轴对称,∴Q(-3,-1).故答案为:(-3,-1).【点睛】本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.15、【解析】

由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.【详解】∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,

∴小军能一次打开该旅行箱的概率是:.故答案是:.【点睛】解题关键是根据概率公式(如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=).16、12或2【解析】

根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当10<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1-a,a.由1-a<a可知,第二次操作时所得正方形的边长为1-a,剩下的矩形相邻的两边分别为1-a,a-(1-a)=2a-1.由于(1-a)-(2a-1)=40-3a,所以(1-a)与(2a-1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1-a>2a-1;②1-a<2a-1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.【详解】由题意,可知当10<a<1时,第一次操作后剩下的矩形的长为a,宽为1-a,所以第二次操作时正方形的边长为1-a,第二次操作以后剩下的矩形的两边分别为1-a,2a-1.此时,分两种情况:①如果1-a>2a-1,即a<,那么第三次操作时正方形的边长为2a-1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1-a,即2a-1=(1-a)-(2a-1),解得a=12;②如果1-a<2a-1,即a>,那么第三次操作时正方形的边长为1-a.则1-a=(2a-1)-(1-a),解得a=2.故答案为:12或2.17、①②③④【解析】

由△ABC中,∠A=36°,AB=AC,根据等腰三角形的性质与三角形内角和定理,即可求得∠C的度数;又由线段垂直平分线的性质,易证得△ABD是等腰三角形,继而可求得∠ABD与∠DBC的度数,证得BD是∠ABC的平分线,然后由∠DBC=36°,∠C=72°,证得∠BDC=72°,易证得△DBC是等腰三角形,个等量代换即可证得④△BCD的周长=AB+BC.【详解】∵△ABC中,∠A=36°,AB=AC,∴∠ABC=∠C==72°,故①正确;∵DM是AB的垂直平分线,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC-∠ABD=36°,∴∠ABD=∠DBC,∴BD是∠ABC的平分线;故②正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°-36°-72°=72°,∴∠BDC=∠C,∴BC=BD,∴△DBC是等腰三角形;故③正确;∵BD=AD,∴△BCD的周长=BD+BC+CD=AC+BC=AB+BC,故④正确;故答案为:①②③④.【点睛】本题考查的是线段垂直平分线的性质及等腰三角形的判定与性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.18、()1.【解析】

首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【详解】∵四边形ABCD为正方形,

∴AB=BC=1,∠B=90°,

∴AC2=12+12,AC=;

同理可求:AE=()2,HE=()3…,

∴第n个正方形的边长an=()n-1,

∴第2016个正方形的边长为()1,

故答案为()1.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到an的规律是解题的关键.三、解答题(共78分)19、【解析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.【详解】解:由(1)得:由(2)得:,所以,原不等式组的解为:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20、(1)(2)(3)【解析】

(1)先通分,然后利用同分母分式加减法的法则进行计算即可;(2)括号内先通分进行分式加减法运算,然后再进行分式乘除法运算,最后把数值代入化简后的结果进行计算即可;(3)方程两边同时乘以(x+2)(x-2),化为整式方程后解整式方程,然后进行检验即可.【详解】(1)原式=;(2)原式==,当,时,原式;(3)两边同时乘以(x+2)(x-2),得:,解得:,检验:当时,(x+2)(x-2)≠0,所以x=10是原分式方程的解.【点睛】本题考查了分式的化简求值,解分式方程,熟练掌握分式混合运算的法则是解(1)(2)的关键,掌握解分式方程的一般步骤以及注意事项是解(3)的关键.21、(1)证明见解析;(1)证明见解析.【解析】

(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EC,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(1)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD1+DB1=DE1.【详解】(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD.(1)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°.∵△ACE≌△BCD,∴∠B=∠CAE=45°,AE=BD,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD1+AE1=DE1,∴AD1+DB1=DE1.【点睛】本题考查了三角形全等的判定方法,及勾股定理的运用.22、(6)①y=2x+2;②见解析;(2)S≠6,见解析;(6)【解析】

(6)①将x=0代入y=mx+2得y=2,故此点D的坐标为(0,2),由CG=OD=2可知点G的坐标为(2,6),将点G(2,6)代入y=mx+2可求得m=2;②延长GF交y轴于点M,根据AAS可证明△OED≌△BGF;(2)如图2所示:过点F作FH⊥BC,垂足为H,延长FG交y轴与点N.先证明Rt△GHF≌Rt△EOD(AAS),从而得到FH=DO=2,由三角形的面积公式可知:S=6﹣a.②当s=6时,a=5,在△CGD中由勾股定理可求得DG=,由菱形的性质可知;DG=DE=,在Rt△DOE中由勾股定理可求得OE=>6,故S≠6;(6)如图6所示:连接DF交EG于点M,过点M作MN⊥y轴,垂足为N.由菱形的性质可知:DM⊥GM,点M为DF的中点,根据角平分线的性质可知:MD=CD=5,由中点坐标公式可知点M的纵坐标为6,得到ND=6,根据勾股定理可求得MN=,则得到点M的坐标为(,6)然后利用待定系数法求得DM、GM的解析式,从而可得到点G的坐标,最后将点G的坐标代入y=mx+2可求得m的值.【详解】解:(6)①∵将x=0代入y=mx+2得;y=2,∴点D的坐标为(0,2).∵CG=OD=2,∴点G的坐标为(2,6).将点G(2,6)代入y=mx+2得:2m+2=6.解得:m=2.∴直线DG的函数表达式为y=2x+2.②如图6,延长GF交y轴于点M,∵DM∥AB,∴∠GFB=∠DMG,∵四边形DEFG是菱形,∴GF∥DE,DE=GF,∴∠DMG=∠ODE,∴∠GFB=∠ODE,又∵∠B=∠DOE=90°,∴△OED≌△BGF(AAS);(2)如图2所示:过点F作FH⊥BC,垂足为H,延长FG交y轴与点N.∵四边形DEFG为菱形,∴GF=DE,GF∥DE.∴∠GNC=∠EDO.∴∠NGC=∠DEO.∴∠HGF=∠DEO.在Rt△GHF和Rt△EOD中,,∴Rt△GHF≌Rt△EOD(AAS).∴FH=DO=2.∴S△GBF=GB•HF=×2×(6﹣a)=6﹣a.∴S与a之间的函数关系式为:S=6﹣a.当s=6时,则6﹣a=6.解得:a=5.∴点G的坐标为(5,6).在△DCG中,由勾股定理可知;DG==.∵四边形GDEF是菱形,∴DE=DG=.在Rt△DOE中,由勾股定理可知OE=>6.∴OE>OA.∴点E不在OA上.∴S≠6.(6)如图6所示:连接DF交EG于点M,过点M作MN⊥y轴,垂足为N.又∵四边形DEFG为菱形,∴DM⊥GM,点M为DF的中点.∵GD平分∠CGE,DM⊥GM,GC⊥OC,∴MD=CD=5.∵由(2)可知点F的坐标为5,点D的纵坐标为2,∴点M的纵坐标为6.∴ND=6.在Rt△DNM中,MN==.∴点M的坐标为(,6).设直线DM的解析式为y=kx+2.将(,6)代入得:k+2=6.解得:k=.∴设直线MG的解析式为y=﹣x+b.将(,6)代入得:﹣65+b=6.解得:b=68.∴直线MG的解析式为y=﹣x+68.将y=6代入得:﹣x+68=6.解得:x=.∴点G的坐标为(,6).将(,6)代入y=mx+2得:m+2=6.解得:m=.故答案为:.【点睛】本题是一次函数综合题,考查了菱形的性质,全等三角形的性质和判定,勾股定理,待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,角平分线的性质,熟练掌握全等三角形的判定与性质是解题的关键.23、将被录用.【解析】

按各项所占百分数求出A、B、C三人的测试成绩,再进行比较即可.【详解】的测试成绩为的测试成绩为的测试成绩为因为,所以将被录用.【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.24、﹣【解析】

直接化简二次根式,进而合并得出答案.【详解】原式=4﹣3×3+2×2=﹣.【点睛】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.25、(1)甲、乙两队单独完成分别需30天,20天;(2)y=0.5x+60;(3)甲队先施工10天,再甲乙合作8天,费用最低为55万元【解析】

(1)设乙队单独完成需a天,则甲队单独完成需1.5a天,根据题意列出方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论