湖北省咸宁市三校2024届八年级下册数学期末复习检测试题含解析_第1页
湖北省咸宁市三校2024届八年级下册数学期末复习检测试题含解析_第2页
湖北省咸宁市三校2024届八年级下册数学期末复习检测试题含解析_第3页
湖北省咸宁市三校2024届八年级下册数学期末复习检测试题含解析_第4页
湖北省咸宁市三校2024届八年级下册数学期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省咸宁市三校2024届八年级下册数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若二次根式有意义,则x的取值范围是()A.x≤﹣ B.x≥﹣ C.x≥ D.x≤2.一元二次方程配方后可变形为().A. B.C. D.3.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. B. C. D.4.下列式子中,为最简二次根式的是()A. B. C. D.5.下列各式从左到右的变形是因式分解的是A. B.C. D.6.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A.40° B.45° C.50° D.55°7.如图四边形是菱形,顶点在轴上,,点在第一象限,且菱形的面积为,坐标为,则顶点的坐标为()A. B. C. D.8.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是()A.4 B.2 C.1 D.9.要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD=CB,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出BD=10,ED=5,则AB的长是()A.2.5 B.10 C.5 D.以上都不对10.若n是实数,且n>0,则一次函数y=﹣nx+n的图象经过的象限是()A.一、二、三 B.一、三、四 C.一、二、四 D.二、三、四二、填空题(每小题3分,共24分)11.小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.12.已知,,,若,则可以取的值为______.13.由作图可知直线与互相平行,则方程组的解的情况为______.14.一组数据3,4,x,6,7的平均数为5,则这组数据的方差______.15.一组数据的平均数是则这组数据的方差为__________.16.如图,在▱ABCD中,再添加一个条件_____(写出一个即可),▱ABCD是矩形(图形中不再添加辅助线)17.如图,在平面直角坐标系中,菱形的顶点在轴上,顶点在反比例函数的图象上,若对角线,则的值为__________.18.已知函数的图像经过点A(1,m)和点B(2,n),则m___n(填“>”“<”或“=”).三、解答题(共66分)19.(10分)某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:候选人面试笔试形体口才专业水平创新能力甲86909692乙92889593若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?20.(6分)如图,一根竹子高0.9丈,折断后竹子顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?(这是我国古代数学著作《九章算术》中的一个问题,其中的丈、尺是长度单位,1丈=10尺).21.(6分)如图,四边形ABCD是正方形,点E是BC边上任意一点,AEF90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.22.(8分)(1)分解因式:a2﹣1+b2﹣2ab(2)解方程:=+23.(8分)某服装店用6000元购进一批衬衫,以60元/件的价格出售,很快售完,然后又用13500元购进同款衬衫,购进数量是第一次的2倍,购进的单价比上一次每件多5元,服装店仍按原售价60元/件出售,并且全部售完.(1)该服装店第一次购进衬衫多少件?(2)将该服装店两次购进衬衫看作一笔生意,那么这笔生意是盈利还是亏损?求出盈利(或亏损)多少元?24.(8分)某公司招聘职员,对甲、乙两位候选人进行了面试,面试中包括形体、口才、专业知识,他们的成绩(百分制)如下表:(1)如果公司根据经营性质和岗位要求,以面试成绩中形体、口才、专业知识按照的比值确定成绩,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)如果公司根据经营性质和岗位要求,以面试成绩中形体占,口才占,专业知识占确定成绩,那么你认为该公司应该录取谁?25.(10分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.(1)在图①、图②中,以格点为顶点,线段AB为一边,分别画一个平行四边形和菱形,并直接写出它们的面积.(要求两个四边形不全等)(2)在图③中,以点A为顶点,另外三个顶点也在格点上,画一个面积最大的正方形,并直接写出它的面积。26.(10分)如图,在平面直角坐标系中,点是原点,四边形是菱形,点的坐标为,点在轴的负半轴上,直线与轴交于点,与轴交于点.(1)求直线的解析式;(2)动点从点出发,沿折线方向以1个单位/秒的速度向终点匀速运动,设的面积为,点的运动时间为秒,求与之间的函数关系式.

参考答案一、选择题(每小题3分,共30分)1、C【解析】【分析】根据二次根式有意义的条件——被开方数为非负数进行求解即可得.【详解】由题意得:2x-1≥0,解得:x≥,故选C.【点睛】本题考查了二次根式有意义的条件,熟知被开方数为非负数时二次根式有意义是解题的关键.2、C【解析】

常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.【详解】解:∵,∴,即.故选C.【点睛】此题考查的是配方法,掌握完全平方公式的特征是解决此题的关键.3、D【解析】

根据等边三角形的性质和平移的性质即可得到结论.【详解】解:∵△OAB是等边三角形,∵B的坐标为(2,0),∴A(1,),∵将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,∴A′的坐标(4,),故选:D.【点睛】本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.4、B【解析】

利用最简二次根式定义判断即可.【详解】A、原式,不符合题意;B、是最简二次根式,符合题意;C、原式,不符合题意;D、原式,不符合题意;故选:B.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.5、C【解析】

根据因式分解的定义逐项进行判断即可得.【详解】A、是整式的乘法,不是因式分解,故本选项不符合题意;B、右边不是整式的积的形式,不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、是整式的乘法,不是因式分解,故本选项不符合题意,故选C.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.6、A【解析】解:∵AE∥BD,∴∠CBD=∠E=35°.∵BD平分∠ABC,∴∠CBA=70°.∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选A.点睛:考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.7、C【解析】

过点C作x轴的垂线,垂足为E,由面积可求得CE的长,在Rt△BCE中可求得BE的长,可求得AE,结合A点坐标可求得AO,可求出OE,可求得C点坐标.【详解】如图,过点C作x轴的垂线,垂足为E,∵S菱形ABCD=20,∴AB⋅CE=20,即5CE=20,∴CE=4,在Rt△BCE中,BC=AB=5,CE=4,∴BE=3,∴AE=AB+BE=5+3=8.又∵A(−2,0),∴OA=2,∴OE=AE−OA=8−2=6,∴C(6,4),故选C.【点睛】此题考查菱形的性质,坐标与图形性质,解题关键在于作辅助线8、C【解析】

根据正方形的性质可得OA=OB,∠OAE=∠OBF=45°,AC⊥BD,再利用ASA证明△AOE≌△BOF,从而可得△AOE的面积=△BOF的面积,进而可得四边形AFOE的面积=正方形ABCD的面积,问题即得解决.【详解】解:∵四边形ABCD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故选C.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质等知识,熟练掌握正方形的性质,证明三角形全等是解题的关键.9、C【解析】∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90∘,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=5.故选C.10、C【解析】

根据题意,在一次函数y=﹣nx+n中,﹣n<0,n>0,结合函数图象的性质可得答案.【详解】解:根据题意,在一次函数y=﹣nx+n中,﹣n<0,n>0,则函数的图象过一、二、四象限,故选:C.【点睛】本题考查一次函数的图象的性质,应该识记一次函数y=kx+b在k、b符号不同情况下所在的象限.二、填空题(每小题3分,共24分)11、1【解析】

解:应分(70-42)÷4=7,

∵第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,∴应分1组.

故答案为:1.12、【解析】

通过画一次函数的图象,从图象观察进行解答,根据当时函数的图象在的图象的上方进行解答即可.【详解】如下图由函数的图象可知,当时函数的图象在的图象的上方,即.

故答案为:.【点睛】本题考查的是一次函数的图象,利用数形结合进行解答是解答此题的关键.13、无解【解析】

二元一次方程组的解,就是两个函数图象的交点坐标,当两函数图象平行时,两个函数无交点,因此解析式所组成的方程组无解.【详解】∵直线y=-5x+2与y=-5x-3互相平行,∴方程组无解,故答案为:无解.【点睛】此题主要考查了一次函数与二元一次方程组的关系,关键是掌握二元一次方程组的解,就是两个函数图象的交点.14、1【解析】

先由平均数的公式求出x的值,再根据方差的公式计算即可.【详解】解:数据3,4,x,6,7的平均数为5,,解得:,这组数据为3,4,5,6,7,这组数据的方差为:.故答案为:1.【点睛】本题考查方差的定义:一般地设n个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15、8【解析】

根据平均数的公式计算出x后,再运用方差的公式即可解出本题.【详解】x=6×5−2−6−10−8=4,S=[(2−6)+(6−6)+(4−6)+(10−6)+(8−6)]=×40=8,故答案为:8.【点睛】此题考查算术平均数,方差,解题关键在于掌握运算法则16、AC=BD【解析】

根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【详解】添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD【点睛】本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.17、-1【解析】

先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.【详解】解:∵菱形的两条对角线的长分别是6和4,

∴C(-3,4),

∵点C在反比例函数y=的图象上,∴k=(-3)×4=-1.

故答案为:-1【点睛】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.18、>【解析】分析:根据一次函数的性质得到y随x的增大而减小,根据1<2即可得出答案.详解:∵函数中,k=-3<0,∴y随x的增大而减小,∵函数y=-3x+2的图象经过点A(1,m)和点B(2,n),1<2,∴m>n,故答案为:>.点睛:本题主要考查对一次函数图象上点的坐标特征,一次函数的性质等知识点的理解和掌握,能熟练地运用一次函数的性质进行推理是本题的关键.三、解答题(共66分)19、选择乙.【解析】

由形体、口才、专业水平、创新能力按照4:6:5:5的比确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可,【详解】形体、口才、专业水平、创新能力按照4:6:5:5的比确定,则甲的平均成绩为=91.2.乙的平均成绩为4+6+5+5=91.8.乙的成绩比甲的高,所以应该录取乙.【点睛】本题考查加权平均数,熟练掌握计算方法是解题的关键.20、4尺【解析】

杆子折断后刚好构成一直角三角形,设杆子折断处离地面的高度是x尺,则斜边为(9-x)尺.利用勾股定理解题即可.【详解】0.9丈=9尺设杆子折断处离地面尺,则斜边为(9-)尺,根据勾股定理得:,解得:=4,答:折断处离地面的高度是4尺.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.21、见解析【解析】

截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可.【详解】证明:在AB上截取BM=BE,连接ME,∵∠B=90°,∴∠BME=∠BEM=45°,∴∠AME=135°∵CF是正方形ABCD的外角的角平分线,∴∠ECF=90°+∠DCF=90°+=135°=∠ECF,∵AEF90°∴∠AEB+=90°又∠AEB+=90°,∴∵AB=BC,BM=BE,∴AM=EC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴AE=EF.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME≌△ECF.22、(1)(a-b+1)(a-b-1)(2)原方程无解.【解析】

(1)先用完全平方公式再用平方差公式分解.(2)按照去分母、去括号、移项合并同类项、系数化为1的步骤计算后,检验即可.【详解】(1)a2﹣1+b2﹣2ab=(a-b)2-1=(a-b+1)(a-b-1)(2)方程两边同时乘以(x+2)(x-2)得:x2-4x+4=x2+4x+4+16,-8x=16x=-2检验:当x=-2时,(x+2)(x-2)=0所以x=-2是原方程的增根,原方程无解.【点睛】本题考查的是分解因式及解分式方程,熟练掌握分解因式的方法及解分式方程的一般步骤是关键,要注意,分式方程必须检验.23、(1)该服装店第一次购进衬衫150件.(2)这笔生意共盈利7500元.【解析】分析:(1)设该服装店第一次购进衬衫x件,根据题目中的“第二次每件进价比第一次多5元”可得出相等关系,列方程求解即可;(2)用第一次的利润+第二次的利润,和是正数表示盈利.详解:(1)设该服装店第一次购进衬衫x件.由题意得:解得:x=150,经检验:x=150是原方程的解.答:该服装店第一次购进衬衫150件.(2)第一次购进的单价为6000÷150=40(元/件)第二次的购进数量为:150×2=300(件)第二次购进的单价为:40+5=45(元/件)这笔生意的利润为:(60-40)×150+(60-45)×300=7500(元)答:这笔生意共盈利7500元.点睛:本题考查的是分式方程的应用,正确分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24、(1)甲将被录取;(2)公司录取乙.【解析】

(1)由形体、口才、专业知识按照的比确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可,

(2)由面试成绩中形体占,口才占,笔试成绩中专业知识占,,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.【详解】解:(1)甲的平均成绩:,乙的平均成绩:,,所以,甲将被录取;(2)甲的平均成绩:,乙的平均成绩:,,所以,公司录取乙.【点睛】本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.25、(1)菱形的面积=4;平行四边形的面积=4;作图见解析(2)正方形的面积=10,作图见解析.【解析】

(1)根据菱形和平行四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论