版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§4.1幂指数的推广及幂函数举例
一、幂指数的推广1.幂的有关概念(1)正整数指数幂(2)零指数幂(3)负整数指数幂(4)正分数指数幂(5)负分数指数幂(6)0的正分数指数幂等于0,0的负分数指数幂没有意义指数式和指数函数2.指数幂的性质复习正整数指数幂有以下运算性质:(1)am·an=am+n(a≠0
m、n为正整数)(2)(am)n=amn(a≠0
m、n为正整数)(3)(ab)n=anbn(a,b≠0
,n为正整数)(4)am÷an=am-n(a≠0m、n为正整数且m>n)(5)(b≠0,n是正整数)当a≠0时,a0=1。(0指数幂的运算)(6)思考:思考:其中a≠0,n是正整数负指数的意义:这就是说:a-n(a≠0)是an的倒数.例如:引入负整数指数幂后,指数的取值范围就扩大到全体整数。am=am(m是正整数)1
(m=0)(m是负整数)例1填空:(1)2-1=___,3-1=___,x-1=___.(2)(-2)-1=___,(-3)-1=___,(-x)-1=___.(3)4-2=___,(-4)-2=___,-4-2=.例2、把下列各式转化为只含有正整数指数幂的形式1、a-32、x3y-23、2(m+n)-24、5、6、例3、利用负整指数幂把下列各式化成不含分母的式子1、2、3、正整数指数幂的运算性质是否适合负指数呢?(1)am·an=am+n(a≠0)(2)(am)n=amn(a≠0)(3)(ab)n=anbn(a,b≠0)(4)am÷an=am-n(a≠0)(5)(b≠0)整数指数幂有以下运算性质:当a≠0时,a0=1。(6)a-3·a-9=(a-3)2=(ab)-3=a-3÷a-5=例4、计算例5计算下列各式,并把结果化为只含正整数指数的形式(a,b均不为0):(1);(2);(3).课堂测试基础题:1.计算:(a+b)m+1·(a+b)n-1;(2)(-a2b)2·(-a2b3)3÷(-ab4)5(3)(x3)2÷(x2)4·x0
(4)(-1.8x4y2z3)÷(-0.2x2y4z)÷(-1/3xyz)提高题:2.已知,求a51÷a8的值;3.计算:xn+2·xn-2÷(x2)3n-3;4.已知:10m=5,10n=4,求102m-3n.思考1:1、当x为何值时,有意义?2、当x为何值时,无意义?3、当x为何值时,值为零?4、当X为何值时,值为正?思考2:3.探索规律:31=3,个位数字是3;32=9,个位数字式9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;……那么,37的个位数字是______,320的个位数字是______。兴趣探索§4.1幂指数的推广及幂函数举例
二、幂函数举例1、幂函数的定义:一般地,我们把形如的函数叫做幂函数,其中为自变量,为常数。练习1:判断下列函数哪几个是幂函数?答案(2)(5)思考:指数函数y=ax与幂函数y=xα有什么区别?
中前面的系数是1,后面没有其它项。式子名称常数
x
y指数函数:y=a
x(a>0且a≠1)
幂函数:y=xα
a为底数指数α为指数底数幂值幂值2、幂函数与指数函数比较判断一个函数是幂函数还是指数函数切入点看未知数x是指数还是底数幂函数指数函数(指数函数)(幂函数)(指数函数)(幂函数)快速反应(指数函数)(幂函数)已知函数是幂函数,并且是偶函数,求m的值。练习1:练习2:已知幂函数f(x)的图像经过点(3,27),求证:f(x)是奇函数。五个常用幂函数的图像和性质
(1)(2)
(3)(4)(5)定义域:值域:奇偶性:单调性:函数的图像定义域:值域:奇偶性:单调性:函数的图像定义域:值域:奇偶性:单调性:函数的图像定义域:值域:奇偶性:单调性:函数的图像x…-2-101234…y=x3……y=x1/2……-8-101827010xy1234-1-2-32468-2-4-6-8y=x3//64y=x2定义域:值域:奇偶性:单调性:函数的图像幂函数的定义域、值域、奇偶性和单调性,随常数α取值的不同而不同.y=x3定义域值域单调性公共点y=xRRR[0,+∞)R[0,+∞)R[0,+∞)奇函数偶函数奇函数非奇非偶函数奇函数在R上是增函数在(-∞,0]上是减函数,在(0,+∞)上是增函数在R上是增函数在(0,+∞)上是增函数在(-∞,0),(0,+∞)上是减函数(1,1)奇偶性y=x2下面将5个函数的图像画在同一坐标系中
(1)(2)
(3)(4)(5)4321-1-2-3-4-2246(1,1)(2,4)(-2,4)(-1,1)(-1,-1)y=x在第一象限内,a>0,在(0,+∞)上为增函数;a<0,在(0,+∞)上为减函数.幂函数的图象都通过点(1,1)α为奇数时,幂函数为奇函数,α为偶数时,幂函数为偶函数.下列结论中正确的是A幂函数图像都经过点(0,0),(1,1)B幂函数图像不可能出现在第四象限C当n>0的时候,幂函数y=xn的值随x的增大而增大。D当n=0的时候,幂函数y=xn的图像是一条直线。练习:利用单调性判断下列各值的大小。(1)5.20.8与5.30.8(2)0.20.3与0.30.3
(3)解:(1)y=x0.8在(0,∞)内是增函数,∵5.2<5.3∴5.20.8<5.30.8(2)y=x0.3在(0,∞)内是增函数∵0.2<0.3∴0.20.3<0.30.3(3)y=x-2/5在(0,∞)内是减函数∵2.5<2.7∴2.5-2/5>2.7-2/5比较各组数的大小练习3:如图所示,曲线是幂函数y=xk在第一象限内的图象,已知k分别取四个值,则相应图象依次为:________
一般地,幂函数的图象在直线x=1的右侧,大指数在上,小指数在下,在Y轴与直线x=1之间正好相反。
C4C2C3C11α>10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年餐饮酒店人力资源服务合同
- 2024年重型铲车租赁协议样本版B版
- 写作文的书知乎
- 2025年度环境保护补偿贸易融资协议3篇
- 2025年度医疗设备采购合同范本及售后服务条款3篇
- 濮阳石油化工职业技术学院《诊断治疗学概论》2023-2024学年第一学期期末试卷
- 云南体育运动职业技术学院《儿科学》2023-2024学年第一学期期末试卷
- 武汉光谷职业学院《饲料学》2023-2024学年第一学期期末试卷
- 扬州环境资源职业技术学院《病原微生物免疫与健康》2023-2024学年第一学期期末试卷
- 基坑土方回填监理旁站记录表
- 2025年考研政治全套复习题库及答案(全册完整版)
- 3《欢欢喜喜庆国庆》说课稿-2024-2025学年道德与法治二年级上册统编版
- 蓄势聚能筹远略扬帆破浪启新航-在2025年务虚会上的讲话提纲
- 先进集体发言稿
- 学生寒假心理健康教育心理调试过健康寒假课件
- 八年级地理(下册星球版)复习提纲
- 新建3000只肉羊养殖基地建设项目可行性研究报告
- 山东省济南市2023-2024学年高二上学期期末考试生物试题 附答案
- DB32T 3292-2017 大跨径桥梁钢桥面环氧沥青混凝土铺装养护技术规程
- GB/T 44819-2024煤层自然发火标志气体及临界值确定方法
- 《MATLAB编程及应用》全套教学课件
评论
0/150
提交评论