2024年山东省济宁市邹城市数学八年级下册期末学业水平测试模拟试题含解析_第1页
2024年山东省济宁市邹城市数学八年级下册期末学业水平测试模拟试题含解析_第2页
2024年山东省济宁市邹城市数学八年级下册期末学业水平测试模拟试题含解析_第3页
2024年山东省济宁市邹城市数学八年级下册期末学业水平测试模拟试题含解析_第4页
2024年山东省济宁市邹城市数学八年级下册期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年山东省济宁市邹城市数学八年级下册期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,点在双曲线上,点在双曲线上,且轴,、在轴上,若四边形为矩形,则它的面积为()A.1 B.2 C.3 D.42.二次函数y1=ax2+bx+c与一次函数y2=mx+n的图象如图所示,则满足ax2+bx+c>mx+n的x的取值范围是()A.﹣3<x<0 B.x<﹣3或x>0 C.x<﹣3 D.0<x<33.将一次函数图像向下平移个单位,与双曲线交于点A,与轴交于点B,则=()A. B. C. D.4.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是()A.(﹣1,2) B.(2,﹣1) C.(1,﹣2) D.(﹣2,1)5.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值范围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<96.一元二次方程根的情况是A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.(A) B.(B) C.(C) D.(D)8.下列各组数中,不是勾股数的是()A.3,4,5 B.5,12,13 C.6,8,10 D.7,13,189.如图,,,,都是正三角形,边长分别为2,,,,且BO,,,都在x轴上,点A,,,从左至右依次排列在x轴上方,若点是BO中点,点是中点,,且B为,则点的坐标是A. B. C. D.10.如图,在一个高为6米,长为10米的楼梯表面铺地毯,则地毯长度至少是()A.6米 B.10米 C.14米 D.16米11.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为(▲)A.-3 B.1 C.5 D.812.如图,平行四边形,对角线交于点,下列选项错误的是()A.互相平分B.时,平行四边形为矩形C.时,平行四边形为菱形D.时,平行四边形为正方形二、填空题(每题4分,共24分)13.如图,在边长为1的菱形ABCD中,∠ABC=120°连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°连接AE,再以AE为边作第三个菱形AEGH,使∠AEG=120°,…,按此规律所作的第n个菱形的边长是________.14.小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.15.写一个无理数,使它与的积是有理数:________。16.若分式有意义,则实数x的取值范围是_______.17.若分式的值为0,则的值为____.18.若个数,,,的中位数为,则_______.三、解答题(共78分)19.(8分)A、B两地的距离是80千米,一辆巴士从A地驶出3小时后,一辆轿车也从A地出发,它的速度是巴士的3倍,已知轿车比巴士早20分钟到达B地,试求两车的速度。20.(8分)如图,点E,F是□ABCD的对角线BD上两点,且BE=DF.求证:四边形AECF是平行四边形.21.(8分)请用合适的方法解下列一元二次方程:(1);(2).22.(10分)如图,已知直角梯形,,,过点作,垂足为点,,,点是边上的一动点,过作线段的垂直平分线,交于点,并交射线于点.(1)如图1,当点与点重合时,求的长;(2)设,,求与的函数关系式,并写出定义域;(3)如图2,联结,当是等腰三角形时,求的长.23.(10分)在平面直角坐标系中,直线(且)与轴交于点,过点作直线轴,且与交于点.(1)当,时,求的长;(2)若,,且轴,判断四边形的形状,并说明理由.24.(10分)已知一次函数.(1)若这个函数的图像经过原点,求a的值.(2)若这个函数的图像经过一、三、四象限,求a的取值范围.25.(12分)如图,在中,,,DF是的中位线,点C关于DF的对称点为E,以DE,EF为邻边构造矩形DEFG,DG交BC于点H,连结CG.求证:≌.若.求CG的长.在的边上取一点P,在矩形DEFG的边上取一点Q,若以P,Q,C,G为顶点的四边形是平行四边形,求出所有满足条件的平行四边形的面积.在内取一点O,使四边形AOHD是平行四边形,连结OA,OB,OC,直接写出,,的面积之比.26.如图,正方形ABCD,点P为射线DC上的一个动点,点Q为AB的中点,连接PQ,DQ,过点P作PE⊥DQ于点E.(1)请找出图中一对相似三角形,并证明;(2)若AB=4,以点P,E,Q为顶点的三角形与△ADQ相似,试求出DP的长.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【详解】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3−1=2.故选B.2、A【解析】

根据函数图象写出二次函数图象在一次函数图象上方部分的x的取值范围即可.【详解】由图可知,﹣3<x<1时二次函数图象在一次函数图象上方,所以,满足ax2+bx+c>mx+n的x的取值范围是﹣3<x<1.故选:A.【点睛】本题考查了二次函数与不等式,数形结合准确识图是解题的关键.3、B【解析】试题分析:先求得一次函数图像向下平移个单位得到的函数关系式,即可求的点A、B的坐标,从而可以求得结果.解:将一次函数图像向下平移个单位得到当时,,即点A的坐标为(,0),则由得所以故选B.考点:函数综合题点评:函数综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.4、A【解析】

根据点(x,y)绕原点逆时针旋转90°得到的坐标为(-y,x)解答即可.【详解】已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,所以A1的坐标为(﹣1,2).故选A.【点睛】本题考查的是旋转的性质,熟练掌握坐标的旋转是解题的关键.5、D【解析】【分析】易得两条对角线的一半和BC组成三角形,那么BC应大于已知两条对角线的一半之差,小于两条对角线的一半之和.【详解】平行四边形的对角线互相平分得:两条对角线的一半分别是5,4,再根据三角形的三边关系,得:1<BC<9,故选D.【点睛】本题考查了平行四边形的性质、三角形三边关系,熟练掌握平行四边形的对角线互相平分是解本题的关键.6、C【解析】

由△=b2-4ac的情况进行分析.【详解】因为,△=b2-4ac=(-3)2-4×1×3=-3<0,所以,方程没有实数根.故选C【点睛】本题考核知识点:根判别式.解题关键点:熟记一元二次方程根判别式.7、C【解析】试题解析:A、是中心对称图形,不是轴对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既是轴对称图形又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选C.8、D【解析】

根据勾股定理的逆定理,验证两小边的平方和是否等于最长边的平方即可得.【详解】A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、52+122=132,能构成直角三角形,是正整数,故是勾股数;C、62+82=102,能构成直角三角形,是正整数,故是勾股数;D、72+132≠182,不能构成直角三角形,故不是勾股数,故选D.【点睛】本题考查了勾股定理的逆定理,勾股数问题,给三个正整数,看两个较小的数的平方和是否等于最大数的平方,若相等,则这三个数为勾股数,否则就不是.9、C【解析】

根据图形,依次表示各个点A的坐标,可以分别发现横、纵坐标的变化规律,则问题可解.【详解】根据题意点A在边长为2的等边三角形顶点,则由图形可知点A坐标为(-1,)由于等边三角形△A1B1C1,的顶点A1在BO中点,则点A到A1的水平距离为边长2,则点A1坐标为(1,2)以此类推,点A2坐标为(5,4),点A3坐标为(13,8),各点横坐标从-1基础上一次增加2,22,23,…,纵坐标依次是前一个点纵坐标的2倍则点A6的横坐标是:-1+2+22+23+24+25+26=125,纵坐标为:26×=64则点A6坐标是(125,64)故选C.【点睛】本题是平面直角坐标系下的点坐标规律探究题,考查了等边三角形的性质,应用了数形结合思想.10、C【解析】

当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=10∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是8+6=14米.故选:C.【点睛】本题考查了勾股定理的应用,与实际生活相联系,加深了学生学习数学的积极性.11、D【解析】当点C横坐标为-3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故选D.12、D【解析】

根据平行四边形、矩形、菱形和正方形的性质,逐一判定即可得解.【详解】A选项,根据平行四边形对角线互相平分的性质,即可判定正确;B选项,对角线相等的平行四边形是矩形,正确;C选项,对角线互相垂直的平行四边形为菱形,正确;D选项,并不能判定其为正方形;故答案为D.【点睛】此题主要考查平行四边形、矩形、菱形和正方形的判定,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、【解析】连接DB,∵四边形ABCD是菱形,∴AD=AB,AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n−1,故答案为()n−1.点睛:本题是一道找规律的题目.探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.14、1【解析】

先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【详解】解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),

所以小明回家的速度是每分钟步行10÷10=1(米).

故答案为:1.【点睛】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.15、答案不唯一,如【解析】

找出已知式子的分母有理化因式即可.【详解】解:因为()()=4-3=1,积是有理数,

故答案为:【点睛】此题考查了分母有理化,弄清有理化因式的定义是解本题的关键.16、【解析】由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.解:∵分式有意义,∴x-1≠2,即x≠1.故答案为x≠1.本题主要考查分式有意义的条件:分式有意义,分母不能为2.17、2【解析】

先进行因式分解和约分,然后求值确定a【详解】原式=∵值为0∴a-2=0,解得:a=2故答案为:2【点睛】本题考查解分式方程,需要注意,此题a不能为-2,-2为分式方程的增根,不成立18、【解析】

根据中位数的概念求解.【详解】解:∵5,x,8,10的中位数为7,∴,解得:x=1.故答案为:1.【点睛】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.三、解答题(共78分)19、解:设巴士的速度是x千米/小时,轿车的速度是3x千米/小时,x=16经检验x=16是方程的解.16×3=48巴士的速度是16千米/小时,轿车的速度是48千米/小时.【解析】设巴士的速度是x千米/小时,轿车的速度是3x千米/小时,根据A、B两地的距离是80千米,一辆巴士从A地驶出3小时后,一辆轿车也从A地出发,它的速度是巴士的3倍,已知轿车比巴士早20分钟到达B地,可列方程求解.20、证明见解析.【解析】

先根据平行四边形的性质得出,再根据平行性的性质可得,然后根据三角形全等的判定定理与性质得出,从而可得,由平行线的判定可得,最后根据平行四边形的判定即可得证.【详解】四边形ABCD是平行四边形在和中,,即四边形AECF是平行四边形.【点睛】本题考查了平行四边形的判定与性质、平行线的性质、三角形全等的判定定理与性质等知识点,熟记平行四边形的判定与性质是解题关键.21、(1),;(2),.【解析】

(1)根据直接开平方法即可求解;(2)根据因式分解法即可求解.【详解】解:(1),x=±2∴,.(2),∴x+3=0或x-1=0∴,.【点睛】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的应用.22、(1)BC=5;(2);(3)的长为或3或.【解析】

(1)根据垂直平分线性质可知,设,,在中用勾股定理求出,即可解答;(2)联结,,在中,,在中,,消去二次项即可得到与的函数关系式;根据点是边上的一动点结合(1)即可得出的定义域;(3)分三种情况讨论,分别画出图形,根据相等的边用勾股定理列方程求解即可.【详解】解:(1)∵梯形中,,,,∴,∵是线段的垂直平分线,∴,在中,,又∵,,设,,,∴,∴.(2)联结,,∵是线段的垂直平分线,∴∵,,∴在中,在中,∴∴(3)在中,,,∴,当是等腰三角形时①∵∴∵∴∴②取中点,联结∵为的中点∴为梯形中位线∴∵∴为中点,∴此时与重合∴③联结并延长交延长线于点此时.∴,,∴,∴在中,,∵∴解得,(不合题意含去)∴综上所述,当是等腰三角形时,的长为或3或【点睛】本题综合考查了矩形的性质、勾股定理解三角形、等腰三角形性质和判定、全等三角形性质和判定,灵活运用勾股定理求线段长是解题的关键.23、(1)BC=1;(2)四边形OBDA是平行四边形,见解析.【解析】

(1)理由待定系数法求出点D坐标即可解决问题;(2)四边形OBDA是平行四边形.想办法证明BD=OA=3即可解决问题.【详解】解:(1)当m=-2,n=1时,直线的解析式为y=-2x+1,当x=1时,y=-1,∴B(1,-1),∴BC=1.(2)结论:四边形OBDA是平行四边形.理由:如图,∵BD∥x轴,B(1,1-m),D(4,3+m),∴1-m=3+m,∴m=-1,∵B(1,m+n),∴m+n=1-m,∴n=3,∴直线y=-x+3,∴A(3,0),∴OA=3,BD=3,∴OA=BD,OA∥BD,∴四边形OBDA是平行四边形.【点睛】本题考查一次函数图象上点的特征,平行四边形的判断等知识,解题的关键是熟练掌握待定系数法,灵活运用所学知识解决问题,属于中考常考题型.24、(1)2;(2)【解析】

(1)y=kx+b经过原点则b=0,据此求解;(2)y=kx+b的图象经过一、三、四象限,k>0,b<0,据此列出不等式组求解即可.【详解】解:(1)由题意得,∴.(2)由题意得解得:∴a的取值范围是:【点睛】考查了一次函数的性质,了解一次函数的性质是解答本题的关键,难度不大.25、(1)证明见解析;(2)①1;②或或.(3):3:1.【解析】

根据矩形的性质、翻折不变性利用HL即可证明;想办法证明即可解决问题;共三种情形画出图形,分别解决问题即可;如图5中,连接OD、OE、OB、首先证明四边形DOHC是矩形,求出OD、OH、OE即可解决问题.【详解】如图1中,四边形DEFG是矩形,,,由翻折不变性可知:,,,,,≌,如图1中,≌,,,,,,,,,,,,,,,.如图2中,当点P与A重合,点Q与E重合时,四边形PQGC是平行四边形,此时如图3中,当四边形QPGC是平行四边形时,.如图4中,当四边形PQCG是平行四边形时,作于M,CE交DF于N.易知,,如图中,当四边形PQCG是平行四边形时,,综上所述,满足条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论