特种与功能高分子的制备_第1页
特种与功能高分子的制备_第2页
特种与功能高分子的制备_第3页
特种与功能高分子的制备_第4页
特种与功能高分子的制备_第5页
已阅读5页,还剩127页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于特种与功能高分子的制备2概述

特种与功能高分子材料的特点在于他们特殊的“性能”和“功能”,因此在制备这些高分子材料的时候,分子设计成为十分关键的研究内容。

设计一种能满足一定需要的功能高分子材料是高分子化学研究的一项主要目标。具有良好性质与功能的高分子材料的制备成功与否,在很大程度上取决于设计方法和制备路线的制定。

第2页,共132页,2024年2月25日,星期天3

功能高分子材料的制备是通过化学或者物理的方法按照材料的设计要求将功能基与高分子骨架相结合,从而实现预定功能的。

从上一世纪50年代起,活性聚合等一大批高分子合成新方法的出现,为高分子的分子结构设计提供了强有力的手段,功能高分子的制备越来越“随心所欲”。

第3页,共132页,2024年2月25日,星期天4

目前采用的制备方法来看,功能高分子材料的制备可归纳为以下三种类型:功能性小分子材料的高分子化;已有高分子材料的功能化;多功能材料的复合以及已有功能高分子材料的功能扩展。

本章由近年来高分子合成的新方法开始,介绍具有代表性的功能高分子设计的基本思路和方法。第4页,共132页,2024年2月25日,星期天52.2.1活性与可控聚合的概念

活性聚合是1956年美国科学家Szwarc等人在研究萘钠在四氢呋喃中引发苯乙烯聚合时发现的一种具有划时代意义的聚合反应。其中阴离子活性聚合是最早被人们发现,而且是目前唯一一个得到工业应用的活性聚合方法。目前这一领域已经成为高分子科学中最受科学界和工业界关注的热点话题。高分子合成新技术第5页,共132页,2024年2月25日,星期天6

Szwarc等人发现,在无水、无氧、无杂质、低温条件下,以四氢呋喃为溶剂,萘钠引发剂引发的苯乙烯阴离子聚合不存在任何链终止反应和链转移反应,在低温、高真空条件下存放数月之久其活性种浓度可保持不变。若再加入单体可得到更高相对分子质量的聚苯乙烯。基于此发现,Szwarc等人第一次提出了活性聚合(livingpolymerization)的概念。第6页,共132页,2024年2月25日,星期天7活性聚合的特点聚合物的分子量正比于消耗单体浓度与引发剂初始浓度之比;聚合物分子量随转化率线性增加;所有聚合物链同时增长,且增长数目不变;聚合物呈现低分散性;聚合物具有活性末端,有再引发单体聚合的能力。第7页,共132页,2024年2月25日,星期天8

活性聚合最典型的特征是引发速度远远大于增长速度,并且在特定条件下不存在链终止反应和链转移反应,亦即活性中心不会自己消失。这些特点导致了聚合产物的相对分子质量可控、相对分子质量分布很窄,并且可利用活性端基制备含有特殊官能团的高分子材料。第8页,共132页,2024年2月25日,星期天9

已经开发成功的活性聚合主要是阴离子活性聚合。其他各种聚合反应类型(阳离子聚合、自由基聚合等)的链转移反应和链终止反应一般不可能完全避免,但在某些特定条件下,链转移反应和链终止反应可以被控制在最低限度而忽略不计。这样,聚合反应就具有了活性的特征。通常称这类虽存在链转移反应和链终止反应但宏观上类似于活性聚合的聚合反应为“可控聚合”。第9页,共132页,2024年2月25日,星期天10

目前,阳离子可控聚合、基团转移聚合、原子转移自由基聚合、活性开环聚合、活性开环歧化聚合等一大批“可控聚合”反应被开发出来,为制备功能高分子提供了极好的条件。第10页,共132页,2024年2月25日,星期天112.2.2阴离子活性聚合

基本特点:1)聚合反应速度极快,通常在几分钟内即告完成;2)单体对引发剂有强烈的选择性;3)无链终止反应;4)多种活性种共存;5)相对分子质量分布很窄,目前已知通过阴离子活性聚合得到的最窄相对分子质量分布指数为1.04。第11页,共132页,2024年2月25日,星期天122.2.3阳离子活性聚合阳离子聚合出现于20世纪40年代,典型工业产品有聚异丁烯和丁基橡胶。阳离子活性中心的稳定性极差,聚合过程不易控制。多年来阳离子活性聚合的探索研究一直在艰难地进行。

第12页,共132页,2024年2月25日,星期天13

1984年,Higashimura首先报道了烷基乙烯基醚的阳离子活性聚合,随后又由Kennedy发展了异丁烯的阳离子活性聚合。

此后,阳离子活性聚合在聚合机理、引发体系、单体和合成应用等方面都取得了重要进展。

目前,烷基乙烯基醚、异丁烯、苯乙烯及其衍生物、1,3—戊二烯、茚和α-蒎烯等都已经实现了阳离子活性聚合。第13页,共132页,2024年2月25日,星期天14

Higashimura等人在用HI/I2引发烷基乙烯基醚的阳离子聚合中,发现聚合过程具有以下活性聚合的典型特征:①数均相对分子质量与单体转化率呈线性关系;②聚合完成后追加单体,数均分子量继续增长;③聚合速率与HI的初始浓度[HI]0成正比;④引发剂中I2浓度增加只影响聚合速率,对相对分子质量无影响;⑤在任意转化率下,产物的分子量分布均很窄,<1.1。第14页,共132页,2024年2月25日,星期天15图2—1用HI/I2引发2-乙酰氧乙基乙烯基醚聚合时单体转化率与数均分子量和分子量分布的关系第15页,共132页,2024年2月25日,星期天16

采用HI/I2引发体系引发烷基乙烯基醚进行阳离子活性聚合的机理为:第16页,共132页,2024年2月25日,星期天17

由上式可见,反应体系中HI首先加成到单体末端,而I2可称为活化剂或共引发剂,它通过亲核作用于I-形成I-…I2络合物,减弱了I-的亲核性,结果不仅使活性中心的活性增大,而且使本来不稳定的碳阳离子稳定在活性状态。第17页,共132页,2024年2月25日,星期天18

实际上,阳离子活性聚合并非真正意义上的活性聚合。聚合过程中的链转移反应和链终止反应并没有完全消除,只是在某种程度上被掩盖了,因此表现为活性聚合的特征。因此这些聚合过程可称为表观活性聚合和准活性聚合。两者的区别在于前者是指体系中存在一定程度的向单体链转移,后者则是指体系中存在可逆链转移反应和链终止反应的聚合体系。第18页,共132页,2024年2月25日,星期天192.2.4活性离子型开环聚合活性开环聚合是正在发展的一个研究领域,和烯类活性聚合一样具有重要的意义。1.环硅氧烷的开环聚合例如六甲基环三硅氧烷(D3)可以被BuLi引发进行阴离子活性开环聚合,也可利用三氟甲基磺酸(CF3SO3H)作引发剂进行阳离子活性开环聚合。

第19页,共132页,2024年2月25日,星期天202.环醚的开环聚合

环醚主要是指环氧乙烷、环氧丙烷、四氢呋喃等。它们的聚合物都是制备聚氨酯的重要原料。

环氧乙烷和环氧丙烷都是三元环,可进行阴离子聚合和阳离子聚合。四苯基卟啉/烷基氯化铝可引发他们进行阴离子活性开环聚合。

第20页,共132页,2024年2月25日,星期天21

四氢呋喃为四元环,较稳定,阴离子聚合不能进行,而只能进行阳离子聚合。碳阳离子与较大的反离子组成的引发剂可引发四氢呋喃的阳离子活性聚合。例如Ph3C+SbF6-可在-58℃下引发四氢呋喃聚合,产物的相对分子质量分散指数为1.04。第21页,共132页,2024年2月25日,星期天222.2.5

基团转移聚合

基团转移聚合(grouptransferpo1ymerization,GTP)作为一种新的活性聚合技术,是1983年由美国杜邦公司的O.W.Webster等人首先报道的。它是除自由基、阳离子、阴离子和配位阴离子型聚合外的第五种连锁聚合技术,一经公布即受到全世界高分子学术界的极大兴趣和高度重视,被认为是继上世纪五十年代Ziegler和Natta发现用配位催化剂使烯烃定向聚合和Szwarc发明阴离子活性聚合之后的又一重要的新聚合技术。第22页,共132页,2024年2月25日,星期天23

所谓基团转移聚合,是以不饱和酯、酮、酰胺和腈类等化合物为单体,以带有硅、锗、锡烷基等基团的化合物为引发剂,用阴离子型或路易士酸型化合物作催化剂,选用适当的有机物为溶剂,通过催化剂与引发剂之间的配位,激发硅、锗、锡等原子与单体羰基上的氧原子结合成共价键,单体中的双键与引发剂中的双键完成加成反应,硅、锗、锡烷基团移至末端形成“活性”化合物的过程。第23页,共132页,2024年2月25日,星期天24①链引发反应第24页,共132页,2024年2月25日,星期天25②链增长反应第25页,共132页,2024年2月25日,星期天26③链终止反应第26页,共132页,2024年2月25日,星期天27

基团转移聚合与阴离子型聚合一样,属“活性聚合”范畴,故产物的相对分子质量分布很窄,一般D=1.03~1.2。同时,产物的聚合度可以用单体和引发剂两者的摩尔浓度比来控制(DP=[M]/[I])。

此外还有以苯甲醛为引发剂,以Bu2AlCl或ZnBr2为催化剂,硅烷基乙烯醚为单体的Aldol—基团转移聚合。第27页,共132页,2024年2月25日,星期天28图2—2Aldol—基团转移聚合过程示意图第28页,共132页,2024年2月25日,星期天29活性自由基聚合的症结

自由基的活性聚合非常困难,主要症结在于:自由基反应活性种之间不可避免的要发生双基终止反应。Kt约为108±1m-1·s-1,比Kp高4-5个数量级。大多数自由基引发剂在常用条件下的分解速率极低,半衰期长。因而,一般来说,聚合增长反应比链引发反应快,导致分子量分布变宽。第29页,共132页,2024年2月25日,星期天30自由基活性聚合的关键延长自由基的寿命;阻止自由基的终止反应。第30页,共132页,2024年2月25日,星期天31活性自由基聚合的几种方法Iniferter法TEMPO体系可逆加成-断裂链转移自由基聚合原子转移自由基聚合反应第31页,共132页,2024年2月25日,星期天321.引发-转移-终止法(iniferter法)

1982年,日本学者Otsu等人提出了iniferter的概念,并将其成功地运用到自由基聚合,使自由基活性/可控聚合进入一个全新的历史发展时期。从活性聚合的特征和自由基聚合的反应机理来理解,实现自由基活性/可控聚合的关键是如何防止聚合过程中因链终止反应和链转移反应而产生无活性聚合物链。

第32页,共132页,2024年2月25日,星期天33

如果引发剂(R-R’)对增长自由基向引发剂自身的链转移反应具有很高的活性,或由引发剂分解产生的自由基的一部分易于发生与链自由基的终止反应,那么乙烯基单体的自由基聚合过程则可由下式来表示。第33页,共132页,2024年2月25日,星期天34

根据以上反应机理,可将自由基聚合简单地视为单体分子向引发剂分子中R-R’键的连续插入反应,得到聚合产物的结构特征是两端带有引发剂碎片。Otsu等由此得到启示,若能找到满足上述条件的合适引发剂,则可通过自由基聚合很容易地合成单官能或双官能聚合物,进而达到聚合物结构设计之目的。由于该引发剂集引发、转移和终止等功能于一体,故称之为引发转移终止剂(iniferter)。第34页,共132页,2024年2月25日,星期天35

目前已发现很多可作为引发转移终止剂的化合物,可分为热分解和光分解两种。1.热引发转移终止剂

主要为是C-C键的对称六取代乙烷类化合物。其中,又以1,2—二取代的四苯基乙烷衍生物居多,其通式如图2—3所示。主要品种包括四苯基丁二腈(TPSTN),五苯基乙烷(PPE),四(对-甲氧基)苯基丁二腈(TMPSTN),l,1,2,2-四苯基-1,2-二苯氧基乙烷(TPPE)和1,1,2,2-四苯基-l,2-二(三甲基硅氧基)乙烷(TPSTE)等。第35页,共132页,2024年2月25日,星期天36图2—31,2-二取代四苯基乙烷衍生物的通式

第36页,共132页,2024年2月25日,星期天37

光引发转移终止剂主要是指含有二乙基二硫代氨基甲酰氧基(DC)基团的化合物。例如N,N-二乙基二硫代氨基甲酸苄酯(BDC)、双(N,N-二乙基二硫代氨基甲酸)对苯二甲酯(XDC)、N-乙基二硫代氨基甲酸苄酯(BEDC)和双(N-乙基二硫代氨基甲酸)对苯二甲酯(XEDC)等。

图2—4为常用光引发转移终止剂的结构式。

第37页,共132页,2024年2月25日,星期天38图2—4常用光引发转移终止剂结构式第38页,共132页,2024年2月25日,星期天392.TEMPO引发体系

TEMPO(2,2,6,6-四甲基氮氧化物)是有机化学中常用的自由基捕捉剂。

上世纪70年代末,澳大利亚的Rizzardo等人首次将TEMPO用来捕捉增长链自由基以制备丙烯酸酯齐聚物。1993年,加拿大Xerox公司在Rizzardo等人的工作基础上开展了苯乙烯的高温聚合。发现采用TEMPO/BPO作为引发体系在120℃条件下引发苯乙烯的本体聚合为活性聚合。第39页,共132页,2024年2月25日,星期天40

在聚合过程中,TEMPO是稳定自由基,只与增长自由基发生偶合反应形成共价键,而这种共价健在高温下又可分解产生自由基。因而TEMPO捕捉增长自由基后,不是活性链的真正死亡,而只是暂时失活,成为休眠种(见图2—5)。第40页,共132页,2024年2月25日,星期天41图2—5TEMPO引发体系的引发机理第41页,共132页,2024年2月25日,星期天42

TEMPO控制的自由基活性聚合既具有可控聚合的典型特征,又可避免阴离活性子和阳离子活性聚合所需的各种苛刻反应条件,因而引起了高分子学术界和工业界的共同兴趣。

TEMPO引发体系只适合于苯乙烯及其衍生物的活性聚合,因此工业价值不大。

第42页,共132页,2024年2月25日,星期天433.可逆加成-断裂链转移自由基聚合(RAFT)

TEMPO引发体系导致自由基活性聚合的原理是增长链自由基的可逆链终止,而可逆加成-断裂链转移自由基聚合过程则实现了增长链自由基的可逆链转移。第43页,共132页,2024年2月25日,星期天44

在经典自由基聚合中,不可逆链转移副反应是导致聚合反应不可控的主要因素之一。而可逆链转移则可形成休眠的大分子链和新的引发活性种。这一概念的建立为活性可控自由基聚合研究指明了方向。如何将这一原理付诸实践,关键是能否找到如图2—6中所示的理想链转移剂。第44页,共132页,2024年2月25日,星期天45图2—6可逆加成—断裂链转移自由基聚合原理示意图其中A—X为链转移剂

第45页,共132页,2024年2月25日,星期天46

1998年,Rizzardo在第37届国际高分子学术讨论会上提出了可逆加成-断裂链转移自由基聚合的概念。并提出了具有高链转移常数和特定结构的链转移剂双硫酯(ZCS2R)。其化学结构如下式所示。第46页,共132页,2024年2月25日,星期天47第47页,共132页,2024年2月25日,星期天48

可逆加成-断裂链转移自由基聚合的机理可用下列反应式表示:第48页,共132页,2024年2月25日,星期天49第49页,共132页,2024年2月25日,星期天504.原子转移自由基聚合(1)基本原理

原子转移自由基聚合的概念是Matyjaszwski和王锦山于1995年提出的。典型的原子转移自由基聚合的基本原理示于图2—7。第50页,共132页,2024年2月25日,星期天51图2—7原子转移自由基聚合的机理引发增长第51页,共132页,2024年2月25日,星期天52

在引发阶段,处于低氧化态的转移金属卤化物Mtn从有机卤化物R-X中吸取卤原子X,生成引发自由基R·及处于高氧化态的金属卤化物Mtn+1-X。自由基R·可引发单体聚合,形成链自由基R-Mn·。R-Mn·可从高氧化态的金属络合物Mtn+1-X中重新夺取卤原子而发生钝化反应,形成R-Mn-X,并将高氧化态的金属卤化物还原为低氧化态Mtn+1。第52页,共132页,2024年2月25日,星期天53

如果R-Mn-X与R-X一样(不总是一样)可与Mtn发生促活反应,生成相应的R-Mn·和Mtn+1-X,同时若R-Mn·与Mtn+1-X又可反过来发生钝化反应生成R-Mn-X和Mtn,则在自由基聚合反应进行的同时,始终伴随着一个自由基活性种与有机大分子卤化物休眠种的可逆转换平衡反应。第53页,共132页,2024年2月25日,星期天54

由于这种聚合反应中的可逆转移包含卤原子从有机卤化物到金属卤化物、再从金属卤化物转移至自由基这样一个循环的原子转移过程,所以是一种原子转移聚合。同时由于其反应活性种为自由基,因此被称为原子转移自由基聚合。原子转移自由基聚合是一个催化过程,催化剂M及M-X的可逆转移控制着[M·],即Rt/Rp(聚合过程的可控性),快速的卤原子转换则控制着相对分子质量和相对分子质量分布(聚合物结构的可控性)。第54页,共132页,2024年2月25日,星期天55(2)引发剂、催化剂和配位剂所有α位上含有诱导共轭基团的卤代烷都能引发ATRP反应。比较典型的ATRP引发剂有α-卤代苯基化合物,如α-氯代苯乙烷、α-溴代苯乙烷、苄基氯、苄基溴等;α-卤代碳基化合物,如α-氯丙酸乙酯、α-溴丙酸乙酯、α-溴代异丁酸乙酯等;α-卤代腈基化合物,如α-氯乙腈、α-氯丙腈等;多卤化物,如四氯化碳、氯仿等。第55页,共132页,2024年2月25日,星期天56

此外,含有弱S-Cl键的取代芳基磺酰氯是苯乙烯和(甲基)丙烯酸酯类单体的有效引发剂,引发效率大于卤代烷。近年的研究发现,分子结构中并无共扼或诱导基团的卤代烷(如二氯甲烷、1,2-二氯乙烷)在FeCl2·4H2O/PPh3的催化作用下,也可引发甲基丙烯酸丁酯的可控聚合,从而拓宽了ATRP的引发剂选择范围。第56页,共132页,2024年2月25日,星期天57

第一代ATRP技术引发体系的催化剂为CuX(X=Cl、Br)。以后Sawamoto和Teyssie等人分别采用Ru和Ni的络合物为催化剂进行了MMA的ATRP反应,获得成功。后来又发现了以卤化亚铁为催化剂的ATRP反应。这些催化剂的研究成功,为开发高效、无公害的引发体系奠定了基础。第57页,共132页,2024年2月25日,星期天58

配位剂的作用:①稳定过渡金属;②增加催化剂溶解性能。早期的配位剂是联二吡啶,与卤代烷、卤化铜组成引发体系:非均相体系,用量大,引发效率低,产物分子量分布较宽。均相体系的取代联二吡啶价格较昂贵,且聚合速率比非均相体系慢得多。

第58页,共132页,2024年2月25日,星期天59

现采用多胺(如N,N,N’,N’’,N’’-五甲基二亚乙基三胺)、亚胺(如2-吡啶甲醛缩正丙胺)、氨基醚类化合物,如双(二甲基氨基乙基)醚等,价格低,效率高。第59页,共132页,2024年2月25日,星期天60(3)原子转移自由基聚合的单体

与其他活性聚合相比,ATRP具有最宽的单体选择范围,这也许是ATRP最大的魅力所在。目前已经报导的可通过ATRP聚合的单体有三大类:

a)苯乙烯及取代苯乙烯

如对氟苯乙烯、对氯苯乙烯、对溴苯乙烯、对甲基苯乙烯、间甲基苯乙烯、对氯甲基苯乙烯、间氯甲基苯乙烯、对三氟甲基苯乙烯、间三氟甲基苯乙烯、对叔丁基苯乙烯等。第60页,共132页,2024年2月25日,星期天61

b)(甲基)丙烯酸酯

如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸异冰片酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸二甲氨基乙酯等;第61页,共132页,2024年2月25日,星期天62

c)特种(甲基)丙烯酸酯

如(甲基)丙烯酸-2-羟乙酯、(甲基)丙烯酸羟丙酯、(甲基)丙烯酸缩水甘油酯、乙烯基丙烯酸酯、(甲基)丙烯酸-1,1-二氢全氟辛酯、(甲基)丙烯酸-β-(N-乙基-全氟辛基磺酰基)氨基乙酯、(甲基)丙烯腈等。

至今为止,ATRP技术尚不能使烯烃类单体、二烯烃类单体、氯乙烯和醋酸乙烯等单体聚合。第62页,共132页,2024年2月25日,星期天63(4)反向原子转移自由基聚合

原子转移自由基聚合虽然有强大的分子设计功能,但也存在一些致命的缺点。如ATRP的引发剂通常为有机卤化物,毒性较大;催化剂中的还原态过渡金属化合物易被空气中的氧气氧化,致使贮存和实验操作都较为困难;催化体系活性不太高,用量较大;金属盐作催化剂对环境保护不利等。第63页,共132页,2024年2月25日,星期天64

为此,近年来一种改进的ATRP——反向原子转移自由基聚合(RATRP)技术得到发展。

RATRP技术采用传统的自由基引发剂(如偶氮二异丁腈、过氧化二苯甲酰等)和高价态的过渡金属络合物(如CuCl2、CuBr2等)组成引发体系,反应过程可用图2—8表示。第64页,共132页,2024年2月25日,星期天65图2—8反向原子转移自由基聚合的机理第65页,共132页,2024年2月25日,星期天66

与常规的原子转移自由基聚合中首先用Mtn活化休眠种R-X不同,反向原子转移自由基聚合是从自由基I·或I-P·与XMtn+1的钝化反应开始的。在引发阶段,引发自由基I·或I-P·一旦产生,就可以从氧化态的过渡金属卤化物XMtn+1夺取卤原子,形成还原态过渡金属离子Mtn和休眠种I-X或I-P-X。以后,过渡金属离子Mtn的作用就同常规原子转移自由基聚合中一样了。第66页,共132页,2024年2月25日,星期天67

反向原子转移自由基聚合也是由Matyjaszwski和王锦山博士等人首先报道的。1995年,他们应用AIBN/CuCl2/bpy成功实现了苯乙烯的反向原子转移自由基聚合。由于是非均相反应,Cu(II)的用量很高时才能较好的控制聚合,而且反应速度很慢。这种非均相的反向原子转移自由基聚合对(甲基)丙烯酸酯类弹体的聚合难以控制。之后,Teyssie等将其发展为

AIBN/FeCl3/pph3

体系,成功实现了甲基丙烯酸甲酯的活性可控聚合。第67页,共132页,2024年2月25日,星期天682.3高分子的化学反应2.3.1高分子化学反应的类型

通过高分子的化学反应是制备特种与功能高分子的重要方法之一。通过高分子的化学反应,可以将天然和合成的通用高分子转变为具有新型结构与功能的聚合物。例如将聚醋酸乙烯酯转变为聚乙烯醇;将聚乙烯醇转变为聚乙烯醇缩甲醛;将聚苯乙烯转变为带磺酸基的强酸性离子交换树脂;将聚丙烯酸特丁酯转变为聚丙烯酸等等。第68页,共132页,2024年2月25日,星期天69

高分子的化学反应有很多种类型,一般根据聚合度和基团的变化(侧基和端基)进行分类。(1)聚合度基本不变,侧基或端基发生变化的反应。这类反应常常被称做相似转变。上面提到的由一种高分子转变成另一种高分子的一些例子均属于此类,许多功能高分子,如高分子试剂、高分子催化剂等都可用这种方法制备。(2)聚合度变大的反应,如交联,接枝,嵌段,扩链等。其中接枝、嵌段等方法是制备个特种与功能高分子常用的方法。第69页,共132页,2024年2月25日,星期天70(3)聚合度变小的反应,如解聚、降解等。这类反应在特种与功能高分子的制备中较少见。虽然高分子的化学反应种类繁多,但用于特种与功能高分子制备的主要为聚合度基本不变或变大的反应,亦即主要为基团发生变化的反应。下面主要介绍这两类反应。第70页,共132页,2024年2月25日,星期天712.3.2高分子的反应活性及其影响因素一般来说,高分子可以进行与低分子同系物相同的化学反应。例如含羟基高分子的乙酰化反应和乙醇的乙酰化反应相同;聚乙烯的氯化反应和己烷的氯化反应类似。这是高分子可以通过基团反应制备具有特种基团的特种与功能高分子的化学基础。第71页,共132页,2024年2月25日,星期天72

在低分子化学中,副反应仅使主产物产率降低。而在高分子反应中,副反应却在同一分子上发生,主产物和副产物无法分离,因此形成的产物实际上具有类似于共聚物的结构。例如,丙酸甲酯水解后,经分离,可得产率为80%的纯丙酸。而聚丙烯酸甲酯经水解,转化程度为80%时,产物是由80%的丙烯酸单元和20%丙烯酸甲酯单元组成的无规共聚物。第72页,共132页,2024年2月25日,星期天73

因此,从单个官能团比较,高分子的反应活性与同类低分子相同。但由于高分子的形态、邻近基团效应等物理-化学因素影响,使得聚合物的反应速率、转化程度会与低分子有所不同。(1)聚集态结构因素

结晶和无定形聚集态结构、交联结构与线性结构、均相溶液与非均向溶液等结构因素均会对高分子的化学反应造成影响。第73页,共132页,2024年2月25日,星期天74

由于低分子反应物很难扩散进入晶区,因此结晶高分子的化学反应往往只发生在无定形区。例如聚乙烯进行氯化反应,反应主要发生在非结晶区,因此很难得到含氯量高于35%的氯化聚乙烯。玻璃态的非晶态高分子由于链段被冻结,不利于低分子物的扩散。因此高分子化学反应最好在玻璃化温度以上或处于溶胀或溶液状态下进行。

轻度交联的高分子一般须在用适当溶剂溶胀后才易进行。如苯乙烯和二乙烯基苯共聚物作为离子交换树脂的母体时的磺化反应。第74页,共132页,2024年2月25日,星期天75(2)化学结构因素

a)几率效应

当高分子的化学反应涉及分子中相邻基团作无规成对反应时,往往会有某些基团由于反应几率的关系而不能参与反应,结果在高分子的分子链上留下孤立的单个基团,使转化程度受到限制。例如聚氯乙烯与锌粉共热脱氯,最高只可能达到86.5%,聚乙烯醇的缩醛化反应,聚丙烯酸的成酐反应也有类似情况。第75页,共132页,2024年2月25日,星期天76图2—9聚乙烯醇的缩醛化反应第76页,共132页,2024年2月25日,星期天77

b)邻近结构效应分子链上邻近结构的某些作用,如静电作用和位阻效应,均可使基团的反应能力降低或增加。有时反应形成的基团也可能改变邻近未反应基团的活性。例如甲基丙烯酸酯类聚合物皂化时有自动催化效应。部分羧基阴离子形成以后,酯基的继续水解并非羟基直接作用,面是由邻近羧基阴离子的作用,其间还会形成环状酸酐。当结构因素有利于五元或六元环状中间体形成时,邻近基团将使反应速率增加。第77页,共132页,2024年2月25日,星期天782—10聚甲基丙烯酸酯皂化时的自动催化效应第78页,共132页,2024年2月25日,星期天79

如果高分子的化学反应发生后,新生成的基团的电荷与参与反应的低分子化合物的电荷相同时,由于静电相斥作用,反应速率降低,转化率将受到影响。例如聚甲基丙烯酰胺在强碱水溶液中水解,当某一酰胺基团的两侧转化为羧基后,对羟基有排斥作用,阻碍水解的进一步进行,因此水解程度一般仅为70%左右。第79页,共132页,2024年2月25日,星期天80

邻近基团作用还与高分子的立体结构有关。如全同立构的聚甲基丙烯酸甲酯的水解速度比间同立构或无规立构的聚甲基丙烯酸甲酯快,这显然与全同立构聚甲基丙酸甲酯中的邻近基团的位置有利于形成环状酸酐中间体有关。第80页,共132页,2024年2月25日,星期天812.3.3高分子的相似转变

如果高分子化合物与低分子化合物的反应仅限于侧基或端基等基团,产物的聚合度与反应前基本不变,这种转变称为高分子的相似转变。高分子的相似转变在工业上应用很多,如纤维素的酯化,聚醋酸乙烯酯的水解,聚乙烯的氯化,含芳环高分子的取代反应等。许多功能高分子是通过这一技术制备的。第81页,共132页,2024年2月25日,星期天82(1)聚醋酸乙烯酯的反应

聚醋酸乙烯酯是一种重要的高分子,除了本身可用作塑料和涂料外,还可醇解成功能高分子制备的主要原料聚乙烯醇。在自然状态下乙烯醇很容易异构成乙醛,因此实际上不存在。聚醋酸乙烯酯用甲醇醇解可制得聚乙烯醇。酸和碱都有催化作用,但碱催化剂效率较高,且少副反应,因此用得较广。第82页,共132页,2024年2月25日,星期天832—11聚醋酸乙烯酯的醇解第83页,共132页,2024年2月25日,星期天84

聚乙烯醇根据其醇解度不同性能差别很大。醇解度大于98%时,不溶于冷水和甲醇。而醇解度在80%左右时,可溶于冷水中。聚乙烯醇可进一步与多种低分子化合物反应,形成各种各样的功能高分子(见图2—12)。第84页,共132页,2024年2月25日,星期天85图2—12可用于在聚乙烯醇结构中引入活性基团的反应第85页,共132页,2024年2月25日,星期天86(2)芳环上的取代反应

聚苯乙烯分子中的苯环比较活泼,可以进行一系列的芳香取代反应,如磺化、氯甲基化、卤化、硝化、锂化、烷基化、羧基化、氨基化等等,因此是功能高分子制备中最常用的骨架母体。

第86页,共132页,2024年2月25日,星期天87

例如,聚苯乙烯与氯甲醚反应可以得到聚对氯甲基苯乙烯。将这种氯甲基化的聚苯乙烯在二甲基亚砜中用碳酸氢钾处理,可形成聚对甲醛苯乙烯,进一步氧化则可得到高分子过氧酸。聚苯乙烯的氯甲基化、甲醛基化、氧化等反应均为高分子的相似转变。此外,通过聚苯乙烯的氯甲基化、磺化等反应制备离子交换树脂以及离子交换树脂的应用过程均涉及高分子的相似转变。第87页,共132页,2024年2月25日,星期天882—13聚苯乙烯与氯甲醚的反应及其进一步的反应第88页,共132页,2024年2月25日,星期天892.3.4高分子聚合度变大的转变

高分子聚合度变大的转变主要有交联、接枝、嵌段、扩链等反应,在功能高分子的制备中,经常用到的有接枝、嵌段、扩链等反应,而交联一般用得较少。第89页,共132页,2024年2月25日,星期天90(1)接枝反应

通过化学反应,在某一聚合物的主链上接上结构、组成不同的支链,这一过程称为接枝,产物称为接枝共聚物。接枝共聚物的性能由主链和支链的组成、结构、长度以及支链数所决定。从形态和性能上看,长支链的接枝共聚物类似共混物,支链短而多的接枝共聚物则类似于无规共聚物。第90页,共132页,2024年2月25日,星期天91

通过某些特殊方法,可将两种性质不同的聚合物接在一起,形成性能特殊的接枝共聚物。例如酸性和碱性的,亲水的和亲油的,非染色性的和易染色的,以及两种互不相溶的聚合物连接在一起等。接枝也可用某些高分子的表面处理。接枝共聚物的制备可分为聚合法和偶联法两大类。前者是指通过单体在高分子主链的引发点上进行聚合,长出支链;而后者是将预先制好的支链偶联到主链高分子上去。第91页,共132页,2024年2月25日,星期天92a)以高分子为引发剂制备接枝共聚物

这种方法的关键是将高分子主链上的某些结构转变为可引发自由基聚合、阴离子聚合或阳离子聚合的引发中心,然后引发单体聚合,形成支链。例如聚对氯甲基苯乙烯上的氯甲基在CuCl/bpy存在下可引发许多烯类单体进行原子转移自由基聚合,得到接枝共聚物。第92页,共132页,2024年2月25日,星期天932—14对氯甲基苯乙烯通过ATRP制备接枝共聚物

第93页,共132页,2024年2月25日,星期天94

b)利用高分子侧基反应制备接枝共聚物

如果高分子主链上存在的侧基官能团具有与另一高分子的端基发生反应的能力,则可通过官能团之间的反应得到接枝共聚物。例如,将通过自由基聚合得到的,分子链中含有羧酸基团的丙烯酸/丙烯酸丁酯/苯乙烯三元无规共聚物与单端羟基聚醚进行反应,可得到主链为亲油性的,而侧链为亲水性的接枝共聚物。第94页,共132页,2024年2月25日,星期天952—15利用侧基官能团制备接枝共聚物第95页,共132页,2024年2月25日,星期天96(2)嵌段反应

嵌段共聚物的主链至少由两种单体构成的长链段组成,常见的嵌段共聚物有AB、ABA和(AB)n型等,其中A和B为不同单体组成的长链段。最典型的嵌段共聚物是SBS和SIS

热塑性弹性体。

第96页,共132页,2024年2月25日,星期天97

嵌段共聚通常有以下几种方法。

①依次加入不同单体的活性聚合

采用活性阴离子聚合依次加入不同单体是目前制备嵌段共聚物最常用的方法。例如以烷基锂为引发剂先引发单体A聚合。当A单体聚合完成后,再加入单体B聚合,最后加入终止剂(CH3OH或H2O),就可得到AB型嵌段共聚物。第97页,共132页,2024年2月25日,星期天98

②特殊引发剂法

利用在不同条件下可独立发挥作用的双功能引发剂,也可用来制备嵌段共聚物。例如下列引发剂含有偶氮基团和过氧化酯两种可引发自由基聚合的官能团,但两种基团的引发活性有较大差异,因此在不同条件下可引发不同的单体进行聚合。第98页,共132页,2024年2月25日,星期天99

引发剂在60℃左右时,偶氮基团分解产生自由基,可引发苯乙烯聚合,得到带有过氧化酯端基的聚苯乙烯。然后过氧化酯端基用胺类化合物活化,在25℃下可引发甲基丙烯酸甲酯聚合,形成AB型嵌段共聚物。第99页,共132页,2024年2月25日,星期天100

③端基预聚体之间反应

利用端基官能团之间的反应制备嵌段共聚物也是常用的方法。例如将端羟基聚苯乙烯与端羧基聚丙烯酸酯之间的酯化反应得到嵌段共聚物。用聚醚二醇或聚酯二醇与二异氰酸酯制备聚氨酯等。又如将通过阳离子活性聚合得到的聚四氢呋喃与用阴离子活性聚合得到的聚甲基丙烯酸特丁酯进行阴阳离子的偶合反应,也可得到嵌段共聚物。第100页,共132页,2024年2月25日,星期天101(3)扩链反应

扩链反应是指通过某些适当方法将分子量较小的高分子化合物连接在一起,从而扩大分子量的过程。通过扩链反应,还可以将某些特殊基团引入分子链中,实现制备特种或功能高分子的目的。常见的扩链反应是先合成端基预聚物,然后用适当的扩链剂进行扩链。端基预聚物的合成有多种方法,如自由基聚合、阴离子聚合、阳离子聚合和缩聚反应等等。第101页,共132页,2024年2月25日,星期天102

①自由基聚合

在自由基聚合中,引发剂残片往往留在分子链的一端。如聚合采取偶合方式终止,则产物分子链两端都有一个引发剂残片。如果采用的引发剂分子中带有羟基、羧基、氨基等活性基团,则预聚物中也会带上羟端基、羧端基和氨端基。如下式所示:第102页,共132页,2024年2月25日,星期天103

②阴离子聚合

用萘钠引发体系引发苯乙烯聚合,可制得双阴离子活性聚苯乙烯。单体反应完后,向聚合体系中加入环氧乙烷,即可形成双端羟基聚苯乙烯。如果通入CO2,则可形成双端羧基聚苯乙烯。第103页,共132页,2024年2月25日,星期天104

③缩聚反应

二元酸和二元醇缩聚时,当酸或醇过量,可制得双端羧基或双端羟基聚酯。通过不同方法制备的预聚物,用适当的扩链剂进行反应,即可达到扩链的目的。若扩链剂分子上带有功能基团,则可用于制备特种或功能高分子。例如,用含有氯原子的二异氰酸酯对双端羟基聚醚进行扩链,可在聚氨酯分子链上带上氯原子,然后可进一步转变为其他功能基团。第104页,共132页,2024年2月25日,星期天1052.4功能高分子的制备技术

功能高分子与通用高分子本质上不同的是分子上往往带有特殊结构的官能团。因此,设计能满足一定需要的功能高分子材料是现代高分子化学研究的主要目标。具有预计性质与功能的高分子材料的制备成功与否,在很大程度上取决于设计方法和制备路线的制定。上一节介绍的活性可控聚合为特种与功能高分子材的分子设计提供了极好的手段。第105页,共132页,2024年2月25日,星期天106

功能高分子材料的制备是通过化学或者物理的方法,按照材料的设计要求将某些带有特殊结构和功能基团的化合物高分子化,或者将这些小分子化合物与高分子骨架相结合,从而实现预定的性能和功能。目前主要有以下四种类型:①功能性小分子的高分子化;②已有高分子材料的功能化;③多功能材料的复合;④已有功能高分子的功能扩展。第106页,共132页,2024年2月25日,星期天1072.4.1功能性小分子的高分子化

许多功能高分子材料是从相应的功能小分子化合物发展而来的,这些已知功能的小分子化合物一般已经具备了我们所需要的部分主要功能,但是从实际使用角度来讲,可能还存在许多不足,无法满足使用要求。对这些功能性小分子进行高分子化反应,赋予其高分子的功能特点,即有可能开发出新的功能高分子材料。第107页,共132页,2024年2月25日,星期天108几个例子:

小分子过氧酸是常用的强氧化剂,在有机合成中是重要的试剂。但是,这种小分子过氧酸的主要缺点在于稳定性不好,容易发生爆炸和失效,不便于储存。反应后产生的羧酸也不容易除掉,经常影响产品的纯度。将其引入高分子骨架后形成的高分子过氧酸,挥发性和溶解性下降,稳定性提高。第108页,共132页,2024年2月25日,星期天109

N,N-二甲基联吡啶是一种小分子氧化还原物质,其在不同氧化还原态时具有不同颜色,经常作为显色剂在溶液中使用。经过高分子化后,可将其修饰固化到电极表面,便可以成为固体显色剂和新型电显材料。第109页,共132页,2024年2月25日,星期天110

青霉素是一种抗多种病菌的广谱抗菌素,应用十分普遍。它具有易吸收,见效快的特点,但也有排泄快的缺点。利用青霉素结构中的羧基、氨基与高分子反应,可得到疗效长的高分子青霉素。例如将青霉素与乙烯醇-乙烯胺共聚物以酰胺键相结合,得到水溶性的药物高分子,这种高分子青霉素在人体内的停留时间为低分子青霉素的30~40倍。第110页,共132页,2024年2月25日,星期天111

功能性小分子的高分子化可利用聚合反应,如共聚、均聚等;也可将功能性小分子化合物通过化学键连接的化学方法与聚合物骨架连接,将高分子化合物作为载体;甚至可通过物理方法,如共混、吸附、包埋等作用将功能性小分子高分子化。第111页,共132页,2024年2月25日,星期天112(1)带有功能性基团的单体的聚合

这种制备方法主要包括下述两个步骤:首先是通过在功能性小分子中引入可聚合基团得到单体,然后进行均聚或共聚反应生成功能聚合物;也可在含有可聚合基团的单体中引入功能性基团得到功能性单体。这些可聚合功能性单体中的可聚合基团一般为双键、羟基、羧基、氨基、环氧基、酰氯基、吡咯基、噻吩基等基团。第112页,共132页,2024年2月25日,星期天113

丙烯酸分子中带有双键,同时又带有活性羧基。经过自由基均聚或共聚,即可形成聚丙烯酸及其共聚物,可以作为弱酸性离子交换树脂、高吸水性树脂等应用。这是带有功能性基团的单体聚合制备功能高分子的简单例子。第113页,共132页,2024年2月25日,星期天114

将含有环氧基团的低分子量双酚A型环氧树脂与丙烯酸反应,得到含双键的环氧丙烯酸酯,这种单体在制备功能性粘合剂方面有广泛的应用。第114页,共132页,2024年2月25日,星期天115

除了单纯的连锁聚合和逐步聚合之外,采用多种单体进行共聚反应制备功能高分子也是一种常见的方法。特别是当需要控制聚合物中功能基团的分布和密度时,或者需要调节聚合物的物理化学性质时,共聚可能是最行之有效的解决办法。第115页,共132页,2024年2月25日,星期天116(2)带有功能性基团的小分子与高分子骨架的结合

这种方法主要是利用化学反应将活性功能基引入聚合物骨架,从而改变聚合物的物理化学性质,赋予其新的功能。通常用于这种功能化反应的高分子材料都是较廉价的通用材料。在选择聚合物母体的时候应考虑许多因素,首先应较容易地接上功能性基团,此外还应考虑价格低廉,来源丰富,具有机械、热、化学稳定性等等。第116页,共132页,2024年2月25日,星期天117

目前常见的品种包括聚苯乙烯、聚氯乙烯、聚乙烯醇、聚(甲基)丙烯酸酯及其共聚物、聚丙烯酰胺、聚环氧氯丙烷及其共聚物、聚乙烯亚胺、纤维素等,其中使用最多的是聚苯乙烯。聚苯乙烯分子中的苯环比较活泼,可以进行一系列的芳香取代反应,如磺化、氯甲基化、卤化、硝化、锂化、烷基化、羧基化、氨基化等等。第117页,共132页,2024年2月25日,星期天118

例如,对苯环依次进行硝化和还原反应,可以得到氨基取代聚苯乙烯;经溴化后再与丁基锂反应,可以得到含锂的聚苯乙烯;与氯甲醚反应可以得到聚氯甲基苯乙烯等活性聚合物。

引入了这些活性基团后,聚合物的活性得到增强,在活化位置可以与许多小分子功能性化合物进行反应,从而引入各种功能基团。第118页,共132页,2024年2月25日,星期天119

除了聚苯乙烯外,聚氯乙烯、聚乙烯醇、聚环氧氯丙烷、聚酰胺、聚苯醚以及一些无机聚合物等都是常用的高分子骨架。如硅胶和玻璃珠表面存在大量的硅羟基,这些羟基可以通过与三氯硅烷等试剂反应,直接引入功能基。这类经过功能化的无机聚合物可作为高分子吸附剂,用于各种色谱分析的固定相、高分子试剂和催化剂使用。无机高分子载体的优点在于机械强度高,可以耐受较高压力。第119页,共132页,2024年2月25日,星期天120(3)功能性小分子通过聚合包埋与高分子材料结合

该方法是利用生成高分子的束缚作用将功能性小分子以某种形式包埋固定在高分子材料中来制备功能高分子材料。有两种基本方法。

a)在聚合反应之前,向单体溶液中加入小分子功能化合物,在聚合过程中小分子被生成的聚合物所包埋

用这

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论