版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【技巧点拨】一、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.二、几种特殊四边形性质、判定四边形性质判定边角对角线矩形对边平行且相等四个角是直角相等且互相平分①有一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.中心、轴对称图形菱形四条边相等对角相等,邻角互补垂直且互相平分,每一条对角线平分一组对角①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形中心对称图形正方形四条边相等四个角是直角相等、垂直、平分,并且每一条对角线平分一组对角1、邻边相等的矩形是正方形2、对角线垂直的矩形是正方形3、有一个角是直角的菱形是正方形4、对角线相等的菱形是正方形中心、轴对称等腰梯形两底平行,两腰相等同一底上的两个角相等相等1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.轴对称图形【备注】:1.根据后面两个图让学生回顾平行四边形的性质和判定,为后面的例题讲解做好准备;2.部分地方引导学生填空,让学生自己回顾。时间大概5分钟。【备注】:1.以下每题教法建议,请老师根据学生实际情况参考;2.在讲解时:不宜采用灌输的方法,应采用启发、诱导的策略,并在读题时引导学生发现一些题目中的条件(相等的量、不变的量、隐藏的量等等),使学生在复杂的背景下自己发现、领悟题目的意思;3.可以根据各题的“教法指导”引导学生逐步解题,并采用讲练结合;注意边讲解边让学生计算,加强师生之间的互动性,让学生参与到例题的分析中来;4.例题讲解,可以根据“参考教法”中的问题引导学生分析题目,边讲边让学生书写,每个问题后面有答案提示;5.引导的技巧:直接提醒,问题式引导,类比式引导等等;6.部分例题可以先让学生自己试一试,之后再结合学生做的情况讲评;7.每个题目的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间足够的情况下讲解。【中考挑战满分模拟练】1.(2023嘉定区一模)在矩形ABCD中,AB=3,AD=4,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且∠ANE=∠DCE.(1)如图,求证:AE是AM和AN的比例中项;(2)当点N在线段AB的延长线上时,联结AC,且AC与NE互相垂直,求MN的长.【分析】(1)利用矩形的性质和相似三角形的判定与性质解答即可;(2)利用△EDC∽△CAD,得出比例式求得线段DE,AE,利用△AME∽△DEC求得线段AM,利用(1)的结论求得线段AN,则MN=AN﹣AM.【解答】(1)证明:∵EM⊥EC,∴∠AEM+∠DEC=90°.∵四边形ABCD为矩形,∴∠A=∠D=90°,∴∠DEC+∠ECD=90°,∴∠AEM=∠DCE,∵∠ANE=∠DCE,∴∠ANE=∠AEM.∵∠A=∠A,∴△ANE∽△AEM,∴.∴AE2=AM•AN,∴AE是AM和AN的比例中项;(2)解:如图,AC===5.∵AC与NE互相垂直,∴∠AFE=90°,∴∠ANE+∠NAF=90°.∵∠NAF+∠CAD=90°,∴∠ANE=∠DAC.∵∠ANE=∠DCE,∴∠DAC=∠DCE,∵∠D=∠D,∴△EDC∽△CAD,∴,∴,∴DE=,∴AE=AD﹣DE=.∵EM⊥EC,∴∠AEM+∠DEC=90°.∵四边形ABCD为矩形,∴∠MAE=∠D=90°,∴∠DEC+∠ECD=90°,∴∠AEM=∠DCE,∴△AME∽△DEC,∴,∴,∴AM=.由(1)知:AE2=AM•AN,∴AN=,∴MN=AN﹣AM==.【点评】本题主要考查了矩形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.2.(2023青浦区一模)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AD=CD,O是对角线AC的中点,联结BO并延长交边CD于点E.(1)①求证:△DAC∽△OBC;②若BE⊥CD,求的值:(2)若DE=2,OE=3,求CD的长.【分析】(1)①由等腰三角形的性质得出∠DAC=∠DCA,由平行线的性质得出∠DAC=∠ACB,由直角三角形的性质得出∠OBC=∠OCB,根据相似三角形的判定定理可得出结论;②得出∠OCE=∠OCB=∠EBC=30°.过点D作DH⊥BC于点H,设AD=CD=2m,则BH=AD=2m,则可得出答案;(2)①如图3,当点E在AD上时,证明四边形ABCE是矩形.设AD=CD=x,由勾股定理得出方程,解方程即可得出答案;②如图4,当点E在CD上时,设AD=CD=x,则CE=x﹣2,设OB=OC=m,由相似三角形的性质得出,证明△EOC∽△ECB,得出比例线段,可得出方程,解方程可得出答案.【解答】(1)①证明:如图1,∵AD=CD,∴∠DAC=∠DCA.∵AD∥BC,∴∠DAC=∠ACB.∵BO是Rt△ABC斜边AC上的中线,∴OB=OC,∴∠OBC=∠OCB,∴∠DAC=∠DCA=∠ACB=∠OBC,∴△DAC∽△OBC;②解:如图2,若BE⊥CD,在Rt△BCE中,∠OCE=∠OCB=∠EBC,∴∠OCE=∠OCB=∠EBC=30°.过点D作DH⊥BC于点H,设AD=CD=2m,则BH=AD=2m,在Rt△DCH中,DC=2m,∴CH=m,∴BC=BH+CH=3m,∴;(2)设AD=CD=x,则CE=x﹣2,设OB=OC=m,∵OE=3,∴EB=m+3,∵△DAC∽△OBC,∴,∴,∴.∵∠EBC=∠OCE,∠BEC=∠OEC,∴△EOC∽△ECB,∴,∴,∴,∴m=,将m=代入,整理得,x2﹣6x﹣10=0,解得x=3+,或x=3﹣(舍去).∴CD=3+.【点评】本题考查了相似形综合题,掌握等腰三角形的性质,直角三角形的性质,相似三角形的判定与性质,矩形的判定与性质是解题的关键.3.(2023青浦区一模)如图1,梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,M在边CD上,连接BM,BM⊥DC.(1)求CD的长;(2)如图2,作∠EMF=90°,ME交AB于点E,MF交BC于点F,若AE=x,BF=y,求y关于x的函数解析式,并写出定义域;(3)若△MCF是等腰三角形,求AE的值.【分析】(1)过点D作DP⊥BC于点E,证明四边形ABPD为矩形,则BP=AD=2,DP=AB=4,再根据勾股定理定理即可求出CD;(2)连接BD,先用等面积法求出BM=4,再证明Rt△ABD≌Rt△MBD(HL),从而得出AD=DM=2,最后证明△MBE∽△MCF,根据相似三角形的性质即可求解;(3)根据△MBE∽△MCF可得△MBE为等腰三角形,根据题意进行分类讨论,当点E在线段AB上时,当点E在AB延长线上时.【解答】解:(1)过点D作DP⊥BC于点P,∵AD∥BC,∠A=90°,∴∠ABC=90°,∵DP⊥BC,∴∠DPB=90°,∴四边形ABPD为矩形,∴BP=AD=2,DP=AB=4,∵BC=5,∴CP=BC﹣BP=5﹣2=3,在Rt△CDE中,根据勾股定理得:.(2)解:连接BD,∵BM⊥DC,DP⊥BC,∴S△BCD=,即5×4=5BM,解得:BM=4,在Rt△ABD和Rt△MBD中,,∴Rt△ABD≌Rt△MBD(HL),∴AD=DM=2,∴CM=CD﹣DM=3,∵BM⊥DC,∴∠CMF+∠BMF=90°,∠C+∠CBM=90°,∵∠EMF=90°,∠ABC=90°,∴∠BME+∠BMF=90°,∠EBM+∠CBM=90°∴∠BME=∠CMF,∠EBM=∠C,∴△MBE∽△MCF,∴,∴,整理得:.(3)①当点E在线段AB上时,由(2)可得△MBE∽△MCF,∵△MCF为等腰三角形,∴△MBE为等腰三角形,当BM=BE=4时,AE=0;当BM=ME=4时,过点M作MQ⊥AB于点Q,由(1)可得:,∴,∵BM=4,∴BQ=BM•cos∠MBE=4×,∵BM=ME,MQ⊥AB,∴,不符合题意,舍去;当BE=ME时,过点E作EH⊥BM于点H,∵BE=ME,EH⊥BM,∴,∵,∴,∴,②当点E在AB延长线上时,∵∠ABC=90°,∠ABM<∠ABC,∴∠MBE>90°,∴当点E在AB延长线上时,∠MBE只能为等腰三角形△MBE的顶角,∴BM=BE=4,∴AE=AB+BE=8.综上:AE=0或或8.【点评】本题主要考查了四边形和三角形的综合应用,相似三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质,解直角三角形,勾股定理等,解题的关键是熟练掌握各个相关知识点并灵活运用,根据题意正确作出辅助线,构造直角三角形那个和全等三角形求解.4.(2023徐汇区一模)已知:在梯形ABCD中,AB∥CD,AD=BC=5,AB=2.5,sinD=,点E是AD边上一点,DE=3,点P是CD边上的一动点,连接EP,作∠EPF,使得∠EPF=∠D,射线PF与AB边交于点F,与CB的延长线交于点G,设DP=x,BG=y.(1)求CD的长;(2)试求y关于x的函数关系式,并写出定义域;(3)连接EF,如果△EFP是等腰三角形,试求DP的长.【分析】(1)作等腰梯形ABCD的高AM、BN,得矩形AMNB,△ADM≌△BCN,则DC=DM+MN+NC=AB+2AD•cosD=8.5;(2)先由三角形内角和定理得出∠DEP=∠GPC,由等腰梯形在同一底上的两个角相等得出∠D=∠C,则△DEP∽△CPG,根据相似三角形对应边成比例得出y关于x的函数关系式,并写出定义域;(3)分三种情况:①PE=PF;②PE=EF;③PF=EF.【解答】解:(1)如图,作等腰梯形ABCD的高AM、DN,得矩形AMNB,△ADM≌△BCN,所以CD=DM+MN+NC=AB+2AD•cosD=2.5+2×5×=8.5;(2)如图.∵∠EPD+∠EPF+∠GPC=∠EPD+∠D+∠DEP=180°,∠EPF=∠D,∴∠DEP=∠GPC,∵ABCD是等腰梯形,∴∠D=∠C,∴△DEP∽△CPG,∴DE:CP=DP:CG,∴3:(8.5﹣x)=x:(y+5);y=﹣x2+x﹣5(<x<6);(3)分三种情况:①如果PE=PF,如图,过F作BC平行线交底边于H,则∠FHP=∠C=∠D.∵在△PED与△FPH中,,∴△PED≌△FPH(AAS),∴ED=PH=3,DP=FH=BC=5;②如果PE=EF,如图,过F作BC平行线交底边于H,则∠FHP=∠C=∠D.在△PED与△FPH中,,∴△PED∽△FPH,∴PE:PF=PD:FH,又∵PE=EF,过E点做△EFP的高ET,则FP:PE=2PT:PE=2cos∠EPF=2cos∠D=,∵FH=BC=5,∴=,解得x=;即PD=;③如果PF=EF,同理可得△PED∽△FPH,∴PE:PF=PD:FH,∵PE=EF,过F点做△EFP的高FT,则PE:PF=2PT:PF=2cos∠EPF=2cosD=,∵FH=BC=5,∴=,解得x=6,∵2.5<x<6;∴x=6(舍去),综上所述:PD=5或时,△EFP是等腰三角形.【点评】本题考查了等腰梯形的性质,全等三角形、相似三角形的判定与性质,等腰三角形的性质,第(3)问进行分类讨论是解题的关键.5.(2023黄浦区一模)已知,如图1,在四边形ABCD中,∠BAC=∠ADC=90°,CD=4,cos∠ACD=.(1)当BC∥AD时(如图2),求AB的长;(2)联结BD,交边AC于点E,①设CE=x,AB=y,求y关于x的函数解析式并写出定义域;②当△BDC是等腰三角形时,求AB的长.【分析】(1)由锐角三角函数定义得AC=5,再由勾股定理得AD=3,然后证△ABC∽△DCA,即可解决问题;(2)①过D作DN⊥AC于点N,由三角形面积得DN=,再由勾股定理得CN=,然后证△BAE∽△DNE,即可解决问题;②分两种情况,a、当BC=BD时,过B作BQ⊥CD于点Q,过A作AP⊥BQ于点P,则CQ=DQ=CD=2,四边形APQD是矩形,再证△APB∽△ADC,即可求解;b、当BD=CD=4时,过B作BM⊥直线AD于点M,证△BMA∽△ADC,得=,设BM=3k,则AM=4k,然后由勾股定理得出方程,解方程,即可得出结论.【解答】解:(1)∵∠ADC=90°,∴cos∠ACD==,∴AC=CD=×4=5,∴AD===3,∵BC∥AD,∴∠ACB=∠DAC,∵∠BAC=∠ADC=90°,∴△ABC∽△DCA,∴=,即=,∴AB=,即AB的长为;(2)①如图1,过D作DN⊥AC于点N,则∠DNE=∠DNC=90°,∵∠ADC=90°,∴S△ACD=AC•DN=AD•CD,∴DN===,∴CN===,∴AN=AC﹣CN=5﹣=,∵CE=x,∴AE=AC﹣CE=5﹣x,EN=CE﹣CN=x﹣,∵AE>0,EN>0,∴<x<5,∵∠BAE=∠DNE=90°,∠AEB=∠NED,∴△BAE∽△DNE,∴=,即=,∴y==,即y关于x的函数解析式为y=(<x<5);②∵∠BAC=90°,∴BC>AC,∵AC=5,CD=4,∴BC>CD,分两种情况:a、当BC=BD时,如图3,过B作BQ⊥CD于点Q,过A作AP⊥BQ于点P,则CQ=DQ=CD=2,四边形APQD是矩形,∴AP=DQ=2,∠PAD=90°,∵∠BAC=90°,∴∠PAD=∠BAC,∴∠BAP=∠CAD,∵∠APB=∠ADC=90°,∴△APB∽△ADC,∴=,即=,解得:AB=;b、当BD=CD=4时,如图4,过B作BM⊥直线AD于点M,则∠BMA=∠BAC=∠ADC=90°,∴∠ABM+∠BAM=∠CAD+∠BAM=90°,∴∠ABM=∠CAD,∴△BMA∽△ADC,∴==,设BM=3k,则AM=4k,∴DM=AD+AM=3+4k,在Rt△BDM中,由勾股定理得:BD2=BM2+DM2,即42=(3k)2+(3+4k)2,整理得:25k2+24k﹣7=0,解得:k1=,k2=(不符合题意舍去),∴AB===5k=;综上所述,当△BDC是等腰三角形时,AB的长为或.【点评】本题是四边形综合题目,考查了矩形的判定与性质、梯形的性质、相似三角形的判定与性质、勾股定理、等腰三角形的性质、锐角三角函数定义以及分类讨论等知识,本题综合性强,熟练掌握矩形的判定与性质,证明三角形相似是解题的关键,属于中考常考题型.6.(2023徐汇区一模)如图,梯形ABCD中,AD∥BC,对角线AC⊥BC,AD=9,AC=12,BC=16,点E是边BC上一个动点,∠EAF=∠BAC,AF交CD于点F、交BC延长线于点G,设BE=x.(1)使用x的代数式表示FC;(2)设=y,求y关于x的函数关系式,并写出定义域;(3)当△AEG是等腰三角形时,直接写出BE的长.【分析】(1)易证△ABC∽△DCA,则有∠B=∠ACD,由∠EAF=∠BAC可得∠BAE=∠CAF,从而得到△ABE∽△ACF,然后根据相似三角形的性质即可解决问题;(2))由△ABE∽△ACF可得=,根据∠EAF=∠BAC可得△AEF∽△ABC,从而得到EF=AF.易证△CFG∽△DFA,从而得到=,问题得以解决;(3)易证△ADF∽△GAE,因而当△GAE是等腰三角形时,△ADF也是等腰三角形,然后只需分三种情况(①AF=DF,②AD=DF,③AF=AD,)讨论,就可解决问题.【解答】解:(1)如图1,∵AC⊥BC,∴∠ACB=90°.∵AD∥BC,∴∠DAC=∠ACB=90°.∵AD=9,AC=12,BC=16,∴AB=20,DC=15.∵==,∠DAC=∠ACB,∴△ABC∽△DCA,∴∠B=∠ACD.∵∠EAF=∠BAC,∴∠BAE=∠CAF,∴△ABE∽△ACF,∴=,∴=,∴CF=x;(2)∵△ABE∽△ACF,∴=,又∵∠EAF=∠BAC,∴△AEF∽△ABC,∴===,∴EF=AF.∵AD∥CG,∴△CFG∽△DFA,∴=,∴y===•=•,整理得:y=(0<x≤16);(3)当△AEG是等腰三角形时,BE的长为、10或7.解题过程如下:∵△ABC∽△DCA,∴∠BAC=∠D,∴∠EAF=∠BAC=∠D.∵AD∥BC,∴∠G=∠FAD,∴△ADF∽△GAE,∴当△GAE是等腰三角形时,△ADF也是等腰三角形.①当AF=DF时,则有∠FAD=∠D,∵∠FAD+∠CAF=90°,∠D+∠ACD=90°,∴∠CAF=∠ACD,∴FA=FC,∴CF=DF=,∴x=,∴x=;②当AD=DF=9时,CF=CD﹣DF=6,∴x=6,∴x=10;③当AF=AD=9时,作AH⊥DF于H,如图2,则有DH=FH.∵S△CAD=AC•AD=CD•AH,∴AH==,∴FH=DH==,∴x=15﹣2×,∴x=7.【点评】本题主要考查了相似三角形的判定与性质、等腰三角形的性质、勾股定理等知识,在解决问题的过程中用到了面积法、分类讨论的思想,有一定的难度,证到△ABE∽△ACF是解决第(1)小题的关键,证到△AEF∽△ABC,从而得到EF=AF是解决第(2)小题的关键,证到△ADF∽△GAE,从而把△GAE是等腰三角形转化为△ADF是等腰三角形是解决第(2)小题的关键.7.(2022青浦一模25题)在四边形ABCD中,AD∥BC,AB=,AD=2,DC=,tan∠ABC=2(如图).点E是射线AD上一点,点F是边BC上一点,联结BE、EF,且∠BEF=∠DCB.(1)求线段BC的长;(2)当FB=FE时,求线段BF的长;(3)当点E在线段AD的延长线上时,设DE=x,BF=y,求y关于x的函数解析式,并写出x的取值范围.【解答】解:(1)如图1,过点A、D分别作AH⊥BC、DG⊥BC,垂足分别为点H、点G.∴AH∥DG,∵AD∥BC,∴四边形AHGD是矩形,∴AD=HG=2,AH=DG,在Rt△ABH中,tan∠ABC=2,AB=,∴=2,∴AH=2BH,∵AH2+BH2=AB2,∴(2BH)2+BH2=()2,∴BH=1,∴AH=2,∴DG=2,在Rt△DGC中,DC=,∴CG===4,∴BC=BH+HG+GC=1+2+4=7;(2)如图1,过点E作EM⊥BC,垂足为点M,∴AH∥EM,∵AD∥BC,∴四边形AHME是矩形,∴EM=AH=2,在Rt△DGC中,DG=2,CG=4,∴tan∠DCB==,∵FB=FE,∴∠FEB=∠FBE.∵∠FEB=∠DCB,∴∠FBE=∠DCB,∴tan∠FBE=.∴=,∴BM=4,在Rt△EFM中,FM2+EM2=FE2,∴(4﹣FB)2+22=FB2,∴BF=;(3)如图2,过点E作EN∥DC,交BC的延长线于点N.∵DE∥CN,∴四边形DCNE是平行四边形,∴DE=CN,∠DCB=∠ENB,∵∠FEB=∠DCB,∴∠FEB=∠ENB,又∵∠EBF=∠NBE,∴△BEF∽△BNE,∴=,∴BE2=BF•BN,过点E作EQ⊥BC,垂足为点Q,则四边形DGQE是矩形,∴EQ=DG=2,∴BQ=x+3.∴BE2=QE2+BQ2=(x+3)2+22=x2+6x+13,∴y(7+x)=x2+6x+13.∴.8.(2022崇明一模25题)已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:(1)当时,求的值;(2)当点E在线段AB上,如果,,求y关于x的函数解析式,并写出定义域;(3)联结AM,直线AM与直线BC交于点G,当时,求AE的值.【小问1详解】解:过点E作EH⊥BD与H,∵正方形的边长为1,,∴EB=1-,∵BD为正方形对角线,∴BD平分∠ABC,∴∠ABD=45°,∵EH⊥BD,∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,∴EH=BH,∴EH=BH=BEsin45=,AB=BDcos45°,∴,∴DH=DB-BH=,;【小问2详解】解:如上图,∵AE=x,∴BE=1-x,∵将△ADE绕点D针旋转90°,得到△DCF,∴CF=AE=x,ED=FD=,∴BF=BC+CF=1+x,在Rt△EBF中EF=,∵∠EDF=90°,ED=FD,∴△DEF为等腰直角三角形,∴∠DFE=∠DEF=45°,∴∠EBM=∠MFD=45°,∵∠EMB=∠DMF,∴△BEM∽△FDM,∴,即,∵∠DEM=∠FBM=45°,∠EMD=∠BMF,∴△EMD∽△BMF,∴,即,∴,∴,∴即,∴,0≤x≤1;【小问3详解】解:当点GBC上,,∵四边形ABCD为正方形,∴AD∥BG,∴∠DAM=∠BGM,∠ADM=∠GBM,∴△BGM∽△DAM,∴,∵由(2)知△BEM∽△FDM,∴,∵DB=,∴,∴,∴,∵,∴即,解,舍去;当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,∵GB∥AD,∴∴∠DAM=∠BGM,∠ADM=∠GBM,∴△BGM∽△DAM,∴,∴,∴,∵∠LBM=∠CBD=45°,ML⊥BC,∴△MLB为等腰直角三角形,∵ML∥CD,∴∠LMB=∠CDB,∠L=∠DCB,∴△MLB∽△DCB,∴,CD=1,∴ML=∵ML∥BE,∴∠L=∠FBE,∠LMF=∠BEF,∴△LMF∽△BEF,∴,∵BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,∴,整理得:,解得,舍去,∴AE的值为或.9.(2022宝山一模25)如图,已知正方形ABCD,将AD绕点A逆时针方向旋转到AP的位置,分别过点作,垂足分别为点、.(1)求证:;(2)联结,如果,求的正切值;(3)联结,如果,求的值.【小问1详解】:如图所示,作CG⊥CE,交FD延长线于G点,∵CE⊥BP,DF⊥BP,CG⊥CE,∴∠EFG=∠FEC=∠ECG=∠BEC=90°,∴四边形FECG为矩形,∠G=90°,∵四边形ABCD为正方形,∴∠BCD=90°,BC=DC,∵∠BCD=∠BCE+∠ECD,∠ECG=∠ECD+∠DCG,∴∠BCE+∠ECD=∠ECD+∠DCG,即:∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(AAS),∴CE=CG,∴四边形FECG为正方形,∴CE=EF;
【小问2详解】解:如图所示,连接CF,由(1)知,CE=EF,CE⊥EF,则△CEF为等腰直角三角形,由旋转的性质得:∠PAD=n°,AP=AD,∴∠PAB=90°+n°,∠APD=(180°-∠PAD)=90°-n°,∵AP=AB,∴∠APB=(180°-∠PAB)=45°-n°,∴∠FPD=∠APD-∠APB=45°,∵DF⊥AB,∴∠DFP=90°,∴△DFP也为等腰直角三角形,PF=DF,∴△DFP∽△CEF,∵,∴,设PF=DF=x,则FE=CE=3x,由(1)知四边形CEFG为正方形,∴FG=FE=3x,∴DG=FG-DF=2x,∵△BCE≌△DCG,∴BE=DG=2x,∴在Rt△BEC中,,∵∠ABP+∠EBC=90°,∠EBC+∠BCE=90°,∴∠ABP=∠BCE,∴;【小问3详解】解:∵,∴如图所示,连接AF和对角线AC,由(2)可知,∠EFC=45°,∠EFD=90°,∴∠CFD=45°,∵AC为正方形ABCD的对角线,∴∠CAD=45°,AC=AB,∴∠CAD=∠CFD,∴点A、C、D、F四点共圆,∴∠AFC=∠ADC=90°,∵AF=AB,∴AF=AC,则在Rt△AFC中,,∵∠ACF为锐角,∴∠ACF=30°,∠FAC=90°-30°=60°,∵∠CAD=45°,∴∠FAD=60°-45°=15°,∵AP=AD,AF=AF,PF=DF,∴△AFP≌△AFD,∴∠FAD=∠FAP=15°,∴∠PAD=30°,∴n=30.10.(2022嘉定一模25题)在平行四边形ABCD中,对角线AC与边CD垂直,,四边形ABCD的周长是16,点E是在AD延长线上的一点,点F是在射线AB上的一点,∠CED=∠CDF.(1)如图1,如果点F与点B重合,求∠AFD的余切值;(2)如图2,点F在边AB上的一点.设AE=x,BF=y,求y关于x的函数关系式并写出它的定义域;(3)如果BF:FA=1:2,求△CDE的面积.【解答】解:(1)如果点F与点B重合,设DF与AC交于点M,∵AC⊥CD,∴∠DCA=90°,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠CAB=∠DCA=90°,在Rt△CAB中,设AB=3k,∵,∴AC=4k,∴BC==5k,∵四边形ABCD的周长是16,∴2(AB+BC)=16,即2(3k+5k)=16,∴k=1,∴AB=3,BC=5,AC=4,∵四边形ABCD是平行四边形,∴AM=CM=AC=2,∴cot∠AFD=;(2)解:∵CD∥AB,∴∠EDC=∠FAD,∠CDF=∠AFD,∵∠CED=∠CDF,∴∠CED=∠AFD,∴△CDE∽△DAF,∴,由题意,得AD=BC=5,DE=x﹣5,DC=AB=3,AF=3﹣y,∴,∴y=﹣,定义域是:5<x≤.(3)解:点F在射线AB上都能得到:△CDE∽△DAF,∴,①当点F在边AB上,∵BF:FA=1:2,AB=3,∴AF=2,由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招投标项目供应链管理优化
- 商业广场楼面耐磨施工合同
- 篮球场水电布线施工协议
- 石油开采挖机计时租赁合同
- 商务楼宇治安管理规则
- 生物科技项目跟投管理
- 舞台座位分配指南
- 广告传媒库房施工合同
- 艺术展览设计审查策略
- 言语康复治疗师年终总结
- 物业服务公司各岗位规范用语
- 医患沟通内容要求记录模板(入院、入院三日、术前、术后、出院)
- Excel 会计记账模板-录入凭证自动生成财务报表(超实用)
- 航海学天文定位第四篇第6章天文定位
- 浅谈深度教学中小学数学U型学习模式
- 物理电学暗箱专题30道
- 装修公司员工劳动合同
- 江西上饶铅山汽车驾驶科目三考试线路
- 通过一起放火案件浅析放火案件的移交工作
- 南京农业大学学生在校学习期间现实表现证明
- 机械专业个人职业生涯规划书范文3篇
评论
0/150
提交评论