湖北省宜昌市当阳市2024年八年级数学第二学期期末达标检测模拟试题含解析_第1页
湖北省宜昌市当阳市2024年八年级数学第二学期期末达标检测模拟试题含解析_第2页
湖北省宜昌市当阳市2024年八年级数学第二学期期末达标检测模拟试题含解析_第3页
湖北省宜昌市当阳市2024年八年级数学第二学期期末达标检测模拟试题含解析_第4页
湖北省宜昌市当阳市2024年八年级数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省宜昌市当阳市2024年八年级数学第二学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.与去年同期相比,我国石油进口量增长了,而单价增长了,总费用增长了,则()A.5 B.10 C.15 D.202.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数的图象上,且x1<x2<x3,()A.若<<,则++>0 B.若<<,则<0C.若<<,则++>0 D.若<<,则<03.将点先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A. B. C. D.4.2018年一季度,华为某销公营收入比2017年同期增长22%,2019年第一季度营收入比2018年同期增长30%,2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A.2x=22%+30% B.1+xC.1+2x=1+22%1+30%5.已知一次函数y=kx﹣k(k≠0),y随x的增大而增大,则该函数的图象大致是()A. B.C. D.6.下列分式约分正确的是()A. B. C. D.7.下表记录了甲、乙、丙、丁四名同学参加某区“中华魂”主题教育演讲比赛的相关数据:根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择甲乙丙丁平均数分90809080方差A.甲 B.乙 C.丙 D.丁8.下列事件为随机事件的是()A.367人中至少有2人生日相同 B.打开电视,正在播广告C.没有水分,种子发芽 D.如果、都是实数,那么9.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm10.如果,为有理数,那么()A.3 B. C.2 D.﹣2二、填空题(每小题3分,共24分)11.已知关于X的一元二次方程有实数根,则m的取值范围是____________________12.如图,已知矩形ABCD中,,,E,F,G,H分别是AB,BC,CD,DA的中点,则四边形EFGH的周长等于_____cm。13.若一次函数y=kx+b的图象经过点P(﹣2,3),则2k﹣b的值为_____.14.关于x的方程有解,则k的范围是______.15.若一组数据1,2,x,4的众数是1,则这组数据的方差为_____.16.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子_____袋.17.甲、乙两人进行射击测试,每人20次射击的平均成绩恰好相等,且他们的标准差分别是S甲=1.8,S乙=0.1.在本次射击测试中,甲、乙两人中成绩较为稳定的是_____.(填:甲或乙)18.如图,在梯形ABCD中,AD∥BC,E为BC上一点,DE∥AB,AD的长为1,BC的长为2,则CE的长为.三、解答题(共66分)19.(10分)已知一次函数y=kx+b(k≠0)的图象经过点(2,-3)和(-1,3).(1)求这个一次函数的关系式;(2)画出这个一次函数的图象.20.(6分)某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y(立方米)与x(时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x之间的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.21.(6分)解分式方程:.22.(8分)解分式方程:(1);(2)=1;23.(8分)解方程:+1=.24.(8分)如图,一次函数y=kx+b(k≠0)经过点B(0,1),且与反比例函数y=(m≠0)的图象在第一象限有公共点A(1,2).(1)求一次函数与反比例函数的解析式;(2)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?25.(10分)(1)计算(2)解不等式组,并写出不等式组的非负整数解。(3)解分式方程:26.(10分)已知关于x的方程(m为常数)(1)求证:不论m为何值,该方程总有实数根;(2)若该方程有一个根是,求m的值。

参考答案一、选择题(每小题3分,共30分)1、B【解析】

设去年的石油进口量是x、单价是y,则今年我国石油进口量是(1+a%)x,单价是(1+)y.根据“总费用增长了15.5%”列出方程并解答.【详解】解:设去年的石油进口量是x、单价是y,则今年我国石油进口量是(1+a%)x,单价是(1+)y,由题意得:(1+a%)x•(1+)y=xy(1+15.5%)解得a=10(舍去负值)故选:B.【点睛】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.2、B【解析】

反比例函数的图像及x1<x2<x3分别进行判断即可【详解】反比例函数的图像及x1<x2<x3分别进行判断若<<,k为负在二四象限,且x1<x2<0,x3>0,则++不一定大于0,故A错;若<<,k为正在一三象限,x1<0,0<x2<x3,则<0,故B正确;若<<,k为负在二四象限,且x1<0,0<x2<x3,则++不一定大于0,故C错;若<<,k为正在一三象限,x1<x2<0,0<x3则>0,故D错误;故选B【点睛】熟练掌握反比例函数的图像及增减性是解决本题的关键3、C【解析】

根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【详解】解:将点P(-2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,

则点Q的坐标为(-2+3,3-4),即(1,-1),

故选:C.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4、D【解析】

利用两种方法算出2019年第一季度的收入,因所得结果是一致的,进而得出等式即可.【详解】解:如果2017年第一季度收入为a,则根据题意2019年第一季度的收入为:a(1+22%)(1+30%),设2018年和2019年第一季度营收入的平均增长率为x,根据题意又可得2019年第一季度收入为:a1+x2,此a(1+22%)(1+30%)=a1+x2,即故选择:D.【点睛】此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.5、B【解析】

一次函数的图象与性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.当b>0时,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴.【详解】∵一次函数y=kx﹣k,y随x增大而增大,∴k>0,﹣k<0,∴此函数的图象经过一、三、四象限.故选B.【点睛】本题主要考查了一次函数的图象与性质,熟练掌握一次函数的图像与系数的关系式解答本题的关键.6、D【解析】

解:A.,故本选项错误;B.不能约分,故本选项错误;C.,故本选项错误;D.,故本选项正确;故选D7、A【解析】

根据表格中的数据可知,甲、丙的平均成绩较好,再根据方差越小越稳定即可解答本题.【详解】由平均数可知,甲和丙成绩较好,

甲的方差小于丙的方差,故甲发挥稳定.故选A【点睛】本题考查方差、算术平均数,解答本题的关键是明确平均数和方差的意义.8、B【解析】

根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.367人中至少有2人生日相同,是必然事件,故A不符合题意;B.打开电视,正在播广告,是随机事件,故B符合题意;C.没有水分,种子发芽,是不可能事件,故C不符合题意;D.如果、都是实数,那么,是必然事件,故D不符合题意.故选B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、D【解析】

根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长;设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,可求出r;接下来根据圆锥的母线长、底面圆的半径以及圆锥的高构成直角三角形,利用勾股定理可计算出圆锥的高.【详解】过O作OE⊥AB于E,如图所示.∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=

OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴由勾股定理可得圆锥的高为:cm.故选D.【点睛】本题考查了勾股定理,扇形的弧长公式,圆锥的计算,圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10、A【解析】

直接利用完全平方公式化简进而得出a,b的值求出答案即可.【详解】解:∵=a+b,

∵a,b为有理数,

∴a=7,b=4,

∴a-b=7-4=1.

故选:A.【点睛】此题主要考查了实数运算,正确应用完全平方公式是解题关键.二、填空题(每小题3分,共24分)11、m≤3且m≠2【解析】试题解析:∵一元二次方程有实数根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.12、20【解析】

连接AC、BD,根据三角形的中位线求出HG,GF,EF,EH的长,再求出四边形EFGH的周长即可.【详解】如图,连接AC、BD,四边形ABCD是矩形,AC=BD=8cm,E、F、G、H分别是AB、BC、CD、DA的中点,HG=EF=AC=4cm,EH=FG=BD=4cm,四边形EFGH的周长等于4+4+4+4=16cm.【点睛】本题考查了矩形的性质,三角形的中位线的应用,能求出四边形的各个边的长是解此题的关键,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.13、-3【解析】

把坐标带入解析式即可求出.【详解】y=kx+b的图象经过点P(﹣2,3),∴3=﹣2k+b,∴2k﹣b=﹣3,故答案为﹣3;【点睛】此题主要考查一次函数的性质,解题的关键是熟知一次函数的图像.14、k≤5【解析】

根据关于x的方程有解,当时是一次方程,方程必有解,时是二元一次函数,则可知△≥0,列出关于k的不等式,求得k的取值范围即可.【详解】解:∵方程有解①当时是一次方程,方程必有解,此时②当时是二元一次函数,此时方程有解∴△=16-4(k-1)≥0

解得:k≤5.综上所述k的范围是k≤5.故答案为:k≤5.【点睛】本题考查了一元二次方程根的判别式的应用.

总结:一元二次方程根的情况与判别式△的关系:

(1)△>0⇔方程有两个不相等的实数根;

(2)△=0⇔方程有两个相等的实数根;

(3)△<0⇔方程没有实数根.15、1.5【解析】试题分析:众数是这组数据出现次数最多的数,由此判断x为1,这组数据的平均数是(1+2+1+4)÷4=2,所以方差为,=1.5.故这组数据的方差为1.5.考点:方差计算.16、6【解析】

根据一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超据:2袋原价付款数+超过2袋的总钱数≤50,列出不等式求解即可得.【详解】解:设可以购买x(x为整数)袋蜜枣粽子.,解得:,则她最多能买蜜枣粽子是6袋.故答案为:6.【点睛】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.17、乙【解析】

根据标准差的意义求解可得.标准差越小,稳定性越好.【详解】解:∵S甲=1.8,S乙=0.1,∴S甲>S乙,∴成绩较稳定的是乙.故答案为:乙.【点睛】本题考查标准差的意义标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.18、1【解析】根据已知证明四边形ABED为平行四边形,利用平行四边形的对边相等得BE=AD,从而可求CE.解答:解:∵AD∥BC,DE∥AB,∴四边形ABED为平行四边形,BE=AD,∴CE=BC-BE=BC-AD=2-1=1.点评:本题考查了梯形常用的作辅助线的方法,平行四边形的判定与性质.三、解答题(共66分)19、(1)y=-2x+1;(2)见解析.【解析】

(1)将点(2,-3)和(-1,3)代入y=kx+b,运用待定系数法即可求出该一次函数的解析式;(2)经过两点(2,-3)和(-1,3)画直线,即可得出这个一次函数的图象;【详解】解:(1)∵一次函数y=kx+b(k≠0)的图象经过点(2,-3)和(-1,3),∴;解得:∴该一次函数的解析式为y=-2x+1;(2)如图,经过两点(2,-3)和(-1,3)画直线,

即为y=-2x+1的图象;【点睛】本题主要考查了运用待定系数法求一次函数的解析式,一次函数的性质,属于基础知识,利用图象与坐标交点作出图象是解题关键,同学们应熟练掌握.20、(1)每小时的进水量为5立方米;(2)当8≤x≤12时,y=3x+1;(3).【解析】

(1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;(2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;(3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻【详解】解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米∴(25﹣5)÷(8﹣4)=5(立方米/时)∴每小时的进水量为5立方米.(2)设函数y=kx+b经过点(8,25),(12,37)解得:∴当8≤x≤12时,y=3x+1(3)∵8点到12点既进水又出水时,每小时水量上升3立方米∴每小时出水量为:5﹣3=2(立方米)当8≤x≤12时,3x+1≥28,解得:x≥9当x>14时,37﹣2(x﹣14)≥28,解得:x≤∴当水塔中的贮水量不小于28立方米时,x的取值范围是9≤x≤【点睛】本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.21、x=1.【解析】

观察可得最简公分母是(x-2)(x+2),方程两边同时乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程两边同乘以,得解得检验:当时,,∴是原方程的解∴原方程的解为.【点睛】此题考查了分式方程的解法,需要掌握转化思想的应用,注意分式方程需检验.22、(1)经检验x=3是分式方程的解;(2)经检验x=﹣1是分式方程的解.【解析】

(1)根据分式方程的原则求解即可,注意分式方程的增根.(2)根据分式方程的原则求解即可,注意分式方程的增根.【详解】解:(1)去分母得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x2+4x+4﹣4=x2﹣4,解得:x=﹣1,经检验x=﹣1是分式方程的解.【点睛】本题主要考查分式方程的求解,特别注意一定不能忘记分式方程根的检验.23、x=0【解析】

分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:1+x﹣2=﹣x﹣1,解得:x=0,经检验x=0是分式方程的解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24、(1)y=x+1;y=;(2)当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.【解析】

(1)把点A、B坐标代入y=kx+b,把点A的坐标代入y=,根据待定系数法即可求得一次函数与反比例函数的解析式;(2)联立方程,求得得一次函数与反比例函数的图象交点坐标,然后利用函数图象的位置关系求解.【详解】(1)∵一次函数y=kx+b(k≠0)经过点A(1,2),点B(0,1),∴,解得k=1,b=1∴一次函数解析式为y=x+1;∵点A(1,2)在反比例函数y=的图象上,∴m=1×2=2,∴反比例函数解析式为y=;(2)∵方程组的解为或,∴一次函数与反比例函数的图象交点坐标为(1,2)、(﹣2,﹣1),∴当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.25、①+2;②0、1;③原方程无解.【解析】

(1)首先计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论