2024届河北省邢台市宁晋县数学八年级下册期末教学质量检测模拟试题含解析_第1页
2024届河北省邢台市宁晋县数学八年级下册期末教学质量检测模拟试题含解析_第2页
2024届河北省邢台市宁晋县数学八年级下册期末教学质量检测模拟试题含解析_第3页
2024届河北省邢台市宁晋县数学八年级下册期末教学质量检测模拟试题含解析_第4页
2024届河北省邢台市宁晋县数学八年级下册期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省邢台市宁晋县数学八年级下册期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.不等式组的解集在数轴上表示为A. B.C. D.2.济南某中学足球队的18名队员的年龄如下表所示:这18名队员年龄的众数和中位数分别是()A.13岁,14岁 B.14岁,14岁 C.14岁,13岁 D.14岁,15岁3.一副三角板按图1所示的位置摆放,将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=8cm,则两个三角形重叠(阴影)部分的面积为()A.16+16cm2B.16+cm2C.16+cm2D.48cm24.下列说法正确的有几个()①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A.1个 B.2个 C.3个 D.4个5.矩形不具备的性质是()A.对角线相等 B.四条边一定相等C.是轴对称图形 D.是中心对称图形6.下表是我国近六年“两会”会期(单位:天)的统计结果:时间201420152016201720182019会期(天)111314131813则我国近六年“两会”会期(天)的众数和中位数分别是()A.13,11 B.13,13 C.13,14 D.14,13.57.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的菱形是正方形D.对角线相等的平行四边形是矩形8.若分式有意义,则的取值范围是()A. B. C. D.9.矩形具有而菱形不一定具有的性质是()A.对角相等 B.对边相等 C.对角线相等 D.对角线互相垂直10.边长为3cm的菱形的周长是()A.15cm B.12cm C.9cm D.3cm11.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块 B.153块 C.154块 D.155块12.一次函数y=x+b的图像经过A(2,y1),B(4,y2),则y1和y2的大小关系为()A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2二、填空题(每题4分,共24分)13.如图,已知两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3把线段AB缩小,则点A的对应点坐标是_________(2,1)或(-2,-1)14.某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)1123y(升)111928476由表格中y与t的关系可知,当汽车行驶________小时,油箱的余油量为1.15.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是.16.已知一组数据1,2,0,-1,x,1的平均数是1,则这组数据的极差为____.17.如图,,分别平分与,,,则与之间的距离是__________.18.命题“对角线相等的四边形是矩形”的逆命题是_____________.三、解答题(共78分)19.(8分)阅读材料:分解因式:x2+2x-3解:原式=x2+2x+1-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2-2x-3=_______;a2-4ab-5b2=_______;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;20.(8分)如图,在平面直角坐标系中,的顶点坐标分别,,,以坐标原点为位似中心,在第三象限画出与位似的三角形,使相似比为,并写出所画三角形的顶点坐标.21.(8分)先化简,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.22.(10分)(1)计算:(2)已知:x=+1,求x2﹣2x的值.23.(10分)如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)24.(10分)已知:如图,四边形中,、、、分别为、、和的中点,且.求证:和互相垂直且平分.25.(12分)如图,在直角△ABC中,∠BAC=90°,AB=8,AC=1.(1)尺规作图:在BC上求作一点P,使点P到点A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)在(1)的条件下,连接AP,求△APC的周长.26.如图,在菱形中,,垂足为点,且为边的中点.(1)求的度数;(2)如果,求对角线的长.

参考答案一、选择题(每题4分,共48分)1、A【解析】

先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【详解】,解不等式得:,解不等式得:,不等式组的解集为,在数轴上表示为:.故选:.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.2、B【解析】∵济南某中学足球队的18名队员中,14岁的最多,有6人,

∴这18名队员年龄的众数是14岁;

∵18÷2=9,第9名和第10名的成绩是中间两个数,

∵这组数据的中间两个数分别是14岁、14岁,

∴这18名队员年龄的中位数是:

(14+14)÷2

=28÷2

=14(岁)

综上,可得

这18名队员年龄的众数是14岁,中位数是14岁.

故选B.3、B【解析】

过G点作GH⊥AC于H,则∠GAC=60°,∠GCA=45°,GC=8cm,先在Rt△GCH中根据等腰直角三角形三边的关系得到GH与CH的值,然后在Rt△AGH中根据含30°的直角三角形三边的关系求得AH,最后利用三角形的面积公式进行计算即可.【详解】解:过G点作GH⊥AC于H,如图,

∠GAC=60°,∠GCA=45°,GC=8cm,

在Rt△GCH中,GH=CH=GC=4cm,

在Rt△AGH中,AH=GH=cm,

∴AC=AH+CH=+4(cm).

∴两个三角形重叠(阴影)部分的面积=AC•GH=×(+4)×4=16+cm2

故选:B.【点睛】本题考查了解直角三角形:求直角三角形中未知的边和角的过程叫解直角三角形.也考查了含30°的直角三角形和等腰直角三角形三边的关系以及旋转的性质.4、C【解析】

根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.5、B【解析】

根据矩形的性质即可判断.【详解】解:矩形的对边相等,四条边不一定都相等,B选项错误,由矩形的性质可知选项A、C、D正确.故选:B【点睛】本题考查了矩形的性质,准确理解并掌握矩形的性质是解题的关键.6、B【解析】

众数是在一组数据中出现次数最多的数;中位数是把数据按照从小到大顺序排列之后,当项数为奇数时,中间的数为中位数;当项数为偶数时,中间两个数的平均数为中位数.由此即可解答.【详解】数据13出现了3次,次数最多,这组数据的众数为13;把这组数据按照从小到大顺序排列为11、13、13、13、14、18,13处在第3位和第4位,它们的平均数为13,即这组数据的中位数是13.故选B.【点睛】本题考查了众数及中位数的判定方法,熟知众数及中位数的定义是解决问题的关键.7、B【解析】

根据正方形,平行四边形,矩形,菱形的判定定理判断即可.【详解】解:A、一组对边平行且相等的四边形是平行四边形,故正确;B、对角线互相垂直且平分的四边形是菱形,故错误;C、对角线相等的菱形是正方形,故正确;D、对角线相等的平行四边形是矩形,故正确;故选:B.【点睛】本题考查了正方形,平行四边形,矩形,菱形的判定定理,熟练掌握判定定理是解题的关键.8、B【解析】

分式有意义时,分母x-1≠0,由此求得x的取值范围.【详解】依题意得:x-1≠0,解得x≠1.故选B.【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.9、C【解析】

根据菱形和矩形的性质即可判断.【详解】解:因为矩形的性质:对角相等、对边相等、对角线相等;菱形的性质:对角相等、对边相等、对角线互相垂直.所以矩形具有而菱形不一定具有的性质是对角线相等.故选:C.【点睛】本题主要考查矩形和菱形的性质,掌握矩形和菱形的性质是解题的关键.10、B【解析】

由菱形的四条边长相等可求解.【详解】解:∵菱形的边长为3cm∴这个菱形的周长=4×3=12cm故选:B.【点睛】本题考查了菱形的性质,熟练运用菱形的性质是本题的关键.11、C【解析】

根据题意设出未知数,列出相应的不等式,从而可以解答本题.【详解】解:设这批手表有x块,

解得,

这批手表至少有154块,

故选C.【点睛】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.12、C【解析】

将点A,点B坐标代入解析式,可求y1,y2,由不等式的性质可得y1、y2的大小关系.【详解】解:∵一次函数y=x+b图象上的两点A(2,y1),B(4,y2),

∴y1=2+b,y2=4+b

∵4>2

∴4+b>2+b

∴y1<y2,

故选C.【点睛】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数图象的解析式是本题的关键.二、填空题(每题4分,共24分)13、(2,1)或(-2,-1)【解析】如图所示:∵A(6,3),B(6,0)两点,以坐标原点O为位似中心,相似比为,∴A′、A″的坐标分别是A′(2,1),A″((﹣2,﹣1).故答案为(2,1)或(﹣2,﹣1).14、12.2【解析】

由表格可知,开始油箱中的油为111L,每行驶1小时,油量减少8L,据此可得y与t的关系式.【详解】解:由题意可得:y=111-8t,

当y=1时,1=111-8t

解得:t=12.2.

故答案为:12.2.【点睛】本题考查函数关系式.注意贮满111L汽油的汽车,最多行驶的时间就是油箱中剩余油量为1时的t的值.15、15.6【解析】试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃.考点:折线统计图;中位数16、4【解析】

根据平均数的定义求出x的值,再根据极差的定义解答.【详解】1+2+0-1+x+1=1×6,所以x=3,则这组数据的极差=3-(-1)=4,故答案为:4.【点睛】本题考查了算术平均数、极差,熟练掌握算术平均数、极差的概念以及求解方法是解题的关键.17、1【解析】

过点G作GF⊥BC于F,交AD于E,根据角平分线的性质得到GF=GH=5,GE=GH=5,计算即可.【详解】解:过点G作GF⊥BC于F,交AD于E,

∵AD∥BC,GF⊥BC,

∴GE⊥AD,

∵AG是∠BAD的平分线,GE⊥AD,GH⊥AB,

∴GE=GH=4,

∵BG是∠ABC的平分线,FG⊥BC,GH⊥AB,

∴GF=GE=4,

∴EF=GF+GE=1,

故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18、矩形的对角线相等【解析】

根据逆命题的定义:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,原命题的条件是对角线相等,结论是矩形,互换即可得解.【详解】原命题的条件是:对角线相等的四边形,结论是:矩形;则逆命题为矩形的对角线相等.【点睛】此题主要考查对逆命题的理解,熟练掌握,即可解题.三、解答题(共78分)19、(1)(x-3)(x+1);(a+b)(a-5b);(2)代数式m2+6m+13的最小值是1【解析】

(1)二次三项式是完全平方式,则常数项是一次项系数一半的平方;(2)利用配方法将代数式m2+6m+13转化为完全平方与和的形,然后利用非负数的性质进行解答.【详解】(1)x2-2x-3,=x2-2x+1-1-3,=(x-1)2-1,=(x-1+2)(x-1-2),=(x-3)(x+1);a2-1ab-5b2,=a2-1ab+1b2-1b2-5b2,=(a-2b)2-9b2,=(a-2b-3b)(a-2b+3b),=(a+b)(a-5b);故答案为:(x-3)(x+1);(a+b)(a-5b);(2)m2+6m+13=m2+6m+9+1=(m+3)2+1,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是1.【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.20、见解析,,,.【解析】

直接利用位似图形的性质得出对应点位置进而得出答案.【详解】解:如图所示:,则,,.【点睛】此题主要考查了位似变换,以及坐标与图形的性质,关键是掌握若位似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(-kx,-ky).21、5【解析】解:原式=.取a=2,原式.先根据分式混合运算的法则把原式进行化简,再选取合适的a的值(使分式的分母和除式不为0)代入进行计算即可.22、(1);(2)1.【解析】

(1)根据二次根式的乘除法和加减法可以解答本题;

(2)根据x的值和平方差公式可以解答本题.【详解】(1)===2;(2)∵x=+1,∴x2﹣2x=x(x﹣2)===5﹣1=1.【点睛】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.23、(1),理由见解析;(2);(3).【解析】

(1)BG=EG,根据已知条件易证△BAG≌△EFG,根据全等三角形的对应边相等即可得结论;(2)①方法一:过点G作GM∥BH,交DH于点M,证明ΔGME∽ΔBHE,即可得,再证明是等边三角形,可得,由此可得;方法二:延长,交于点,证明ΔHBM为等边三角形,再证明∽,即可得结论;②如图3,连接EC交DF于O根据三角函数定义得cosα=,则OF=bcosα,DG=a+2bcosα,同理表示AH的长,代入计算即可.【详解】(1),理由如下:∵四边形是平行四边形,∴∥,.∵四边形是菱形,∴∥,.∴∥,.∴.又∵,∴≌.∴.(2)方法1:过点作∥,交于点,∴.∵,∴∽.∴.由(1)结论知.∴.∴.∵四边形为菱形,∴.∵四边形是平行四边形,∴∥.∴.∵∥,∴.∴,即.∴是等边三角形。∴.∴.方法2:延长,交于点,∵四边形为菱形,∴.∵四边形为平形四边形,∴,∥.∴.,即.∴为等边三角形.∴.∵∥,∴,.∴∽,∴.由(1)结论知∴.∴.∵,∴.(3).如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设FG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∴AM=AD=(2a+2bcosα)=a+bcosα,Rt△AHM中,cosα=,∴AH=,∴==cosα.【点睛】本题是四边形综合题,其中涉及到菱形的性质,等边三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论