




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年湖北省黄冈市名校八年级数学第二学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知一组数据a.b.c的平均数为5,方差为4,那么数据,,的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.102.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.43.点(1,-6)关于原点对称的点为()A.(-6,1) B.(-1,6) C.(6,-1) D.(-1,-6)4.已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线长为()A. B.6 C.13 D.5.如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处,当为直角三角形时,的长为()A.3 B. C.2或3 D.3或6.如果a为任意实数,下列各式中一定有意义的是()A. B. C. D.7.“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,这体现的数学思想方法是()A.分类 B.类比 C.方程 D.数形结合8.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.6.5 D.8.59.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是()A.3<x<5 B.-5<x<3 C.-3<x<5 D.-5<x<-310.下列角度不可能是多边形内角和的是()A.180° B.270° C.360° D.900°11.如图,小“鱼”与大“鱼”是位似图形,如果小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为().A.(-a,-2b) B.(-2a,-b) C.(-2a,-2b) D.(-2b,-2a)12.点关于原点的对称点坐标是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,直线,直线分别交,,于点,,,直线分别交,,于点,,.若,则______.14.已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h时,他们之间的距离为______km.15.为了解某篮球队队员身高,经调查结果如下:3人,2人,2人,3人,则该篮球队队员平均身高是__________.16.如图,点C为线段AB上一点,且CB=1,分别以AC、BC为边,在AB的同一侧作等边△ACD和等边△CBE,连接DE,AE,∠CDE=30°,则△ADE的面积为_____.17.分解因式:﹣2x2y+16xy﹣32y=.18.计算:=___________.三、解答题(共78分)19.(8分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出△ABC关于原点成中心对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.20.(8分)解方程:x2-1=4x21.(8分)计算:(小题1)解不等式组22.(10分)如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.(1)由图1通过观察、猜想可以得到线段AC与线段BC的数量关系为___,位置关系为__;(2)保持图1中的△ABC固定不变,绕点C旋转DE所在的直线MN到图2中的位置(当垂线AD、BE在直线MN的同侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明(第一问中得到的猜想结论可以直接在证明中使用);(3)保持图2中的△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有___关系.23.(10分)如图,在平行四边形AECF中,B,D是直线EF上的两点,BE=DF,连接AB,BC,AD,DC.求证:四边形ABCD是平行四边形.24.(10分)如图,在平面直角坐标系中,四边形为正方形,已知点、,点、在第二象限内.(1)点的坐标___________;(2)将正方形以每秒个单位的速度沿轴向右平移秒,若存在某一时刻,使在第一象限内点、两点的对应点、正好落在某反比例函数的图象上,请求出此时的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在轴上的点和反比例函数图象上的点,使得以、、、四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点、的坐标;若不存在,请说明理由.25.(12分)已知点P(2,2)在反比例函数y=(k≠0)的图象上.(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.26.如图,为锐角三角形,是边上的高,正方形的一边在上,顶点、分别在、上.已知,.(1)求证:;(2)求这个正方形的面积.
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据数据a,b,c的平均数以及方差即可求出a-2,b-2,c-2的平均数和方差.【详解】∵数据a,b,c的平均数是5,∴,∴,∴数据a-2,b-2,c-2的平均数是3,∵数据a,b,c的方差为4,∴∴a-2,b-2,c-2的方差所以B选项正确.【点睛】主要考查平均数和方差的公式计算以及灵活运用.2、C【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=1,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=1.∴EP+FP的最小值为1.故选C.考点:菱形的性质;轴对称-最短路线问题3、B【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,可得答案.【详解】解:点(1,-6)关于原点对称的点的坐标是(-1,6);故选:B.【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.4、D【解析】已知直角三角形的两直角边长分别为5和12,根据勾股定理求得斜边为13,根据直角三角形斜边上的中线等于斜边的一半,得此直角三角形斜边上的中线长为,故选D.5、D【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示。连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A.B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5−3=2,设BE=x,则EB′=x,CE=4−x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4−x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示。此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故选:D.【点睛】此题主要考查矩形的折叠问题,解题的关键是根据题意分情况讨论.6、C【解析】
解:选项A、B、D中的被开方数都有可能是负数,选项C的被开方数,一定有意义.故选C.7、B【解析】
根据分式和分数的基本性质,成立的条件等相关知识,分析求解.【详解】“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,比如分数的基本性质,分数成立的条件等,这体现的数学思想方法是类比故选:B【点睛】本题的解题关键是掌握分数和分式的基本性质和概念.8、C【解析】
利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】解:由勾股定理得,斜边=122所以,斜边上的中线长=12×13=6.1故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.9、A【解析】
点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-1)在第四象限,∴,解得:3<x<1.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.10、B【解析】
根据多边形的内角和公式即可求解.【详解】解:A、180°÷180°=1,是180°的倍数,故可能是多边形的内角和;B、270°÷180°=1…90°,不是180°的倍数,故不可能是多边形的内角和;C、360°÷180°=2,是180°的倍数,故可能是多边形的内角和;D、900÷180=5,是180°的倍数,故可能是多边形的内角和.故选:B.【点睛】此题主要考查多边形的内角,解题的关键是熟知多边形的内角和公式.11、C【解析】
根据位似图形的性质结合图形写出对应坐标即可.【详解】∵小“鱼”与大“鱼”的位似比是∴大“鱼”上对应“顶点”的坐标为(-2a,-2b)故答案为:C.【点睛】本题考查了位似图形的问题,掌握位似图形的性质是解题的关键.12、B【解析】
坐标系中任意一点,关于原点的对称点是,即关于原点的对称点,横纵坐标都变成相反数.【详解】根据中心对称的性质,得点关于原点的对称点的坐标为.故选B.【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.二、填空题(每题4分,共24分)13、【解析】
先由,根据比例的性质可得,再根据平行线分线段成比例定理求解即可.【详解】解:∴故答案为。【点睛】本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键。14、1.5【解析】
因为甲过点(0,0),(2,4),所以S甲=2t.因为乙过点(2,4),(0,3),所以S乙=t+3,当t=3时,S甲-S乙=6-=15、173.1.【解析】
根据加权平均数的定义求解可得.【详解】解:(172×3+173×2+174×2+171×3)÷(3+2+2+3)=(116+346+348+121)÷10=1731÷10=173.1(cm)答:该篮球队队员平均身高是173.1cm.故答案为:173.1.【点睛】本题主要考查加权平均数,熟练掌握加权平均数的定义是解题的关键.16、【解析】
由等边三角形的性质得出CE=CB=1,AD=CD,∠DCA=∠ECB=∠ADC=60°,由平角的定义得出∠DCE=60°,由三角形内角和定理得出∠CED=90°,由含30°角的直角三角形的性质得出CE=CD,即AD=CD=2CE=2,DE=CD•sin60°=2×=,∠ADE=∠ADC+∠CDE=90°,则S△ADE=AD•DE,即可得出结果.【详解】解:∵△ACD和△CBE都是等边三角形,∴CE=CB=1,AD=CD,∠DCA=∠ECB=∠ADC=60°,∴∠DCE=180°﹣∠DCA﹣∠ECB=180°﹣60°﹣60°=60°,∵∠CDE=30°,∴∠CED=180°﹣∠CDE﹣∠DCE=180°﹣30°﹣60°=90°,∴CE=CD,即AD=CD=2CE=2,DE=CD•sin60°=2×=,∠ADE=∠ADC+∠CDE=60°+30°=90°,∴S△ADE=AD•DE=×2×=,故答案为:.【点睛】本题考查了等边三角形的性质、三角形内角和定理、含30°角直角三角形的性质、三角形面积的计算等知识,熟练掌握等边三角形的性质,证明三角形是含30°角直角三角形是解题的关键.17、﹣2y(x﹣4)2【解析】试题分析:根据提取公因式以及完全平方公式即可求出:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为﹣2y(x﹣4)2考点:因式分解18、【解析】
解:2-=故答案为:三、解答题(共78分)19、(1)图略;(2)图略,点B″的坐标为(0,﹣6);(3)点D坐标为(﹣7,3)或(3,3)或(﹣5,﹣3).【解析】
(1)根据网格结构找出点A、B、C关于原点对称的点A′、B′、C′的位置,然后顺次连接即可;
(2)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B的对应点的坐标;
(3)分AB、BC、AC是平行四边形的对角线三种情况解答.【详解】解:(1)如图所示△A′B′C′即为所求;
(2)如图所示,△A''B''(3)D(-7,3)或(-5,-3)或(3,3).
当以BC为对角线时,点D3的坐标为(-5,-3);
当以AB为对角线时,点D2的坐标为(-7,3);
当以AC为对角线时,点D1坐标为(3,3).【点睛】本题考查了利用旋转变换作图,平行四边形的对边相等,熟记性质以及网格结构准确找出对应点的位置是解题的关键.20、【解析】
解:,,方程有两个不相等的实数根【点睛】本题考查一元二次方程,本题难度较低,主要考查学生对一元二次方程知识点的掌握,运用求根公式即可.21、-2<x≤-6【解析】
解不等式(1)得:x-6≥2xx-2x≥6-x≥6x≤-6解不等式(2)得:1-3x+3<8-x-3x+x<8-1-3-2x<4x>-2∴这个不等式的解是-2<x≤-622、(1)AC=BC,AC⊥BC,;(2)DE=AD+BE,理由见解析;(3)DE=BE−AD.【解析】
(1)根据矩形的性质及勾股定理,即可证得△ADC≌△BEC,根据全等三角形的性质即可得到结论;(2)通过证明△ACD≌△CBE,根据全等三角形的性质得出即可得线段AD、BE、DE长度之间的关系;(3)通过证明△ACD≌△CBE,根据全等三角形的性质得出即可得线段AD、BE、DE长度之间的关系.【详解】(1)AC=BC,AC⊥BC,在△ADC与△BEC中,,∴△ADC≌△BEC(SAS),∴AC=BC,∠DCA=∠ECB.∵AB=2AD=DE,DC=CE,∴AD=DC,∴∠DCA=45°,∴∠ECB=45°,∴∠ACB=180°−∠DCA−∠ECB=90°.∴AC⊥BC,故答案为:AC=BC,AC⊥BC;(2)DE=AD+BE.理由如下:∵∠ACD=∠CBE=90°−∠BCE,在△ACD与△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE,DC=EB.∴DC+CE=BE+AD,即DE=AD+BE.(3)DE=BE−AD.理由如下:∵∠ACD=∠CBE=90°−∠BCE,在△ACD与△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE,DC=EB.∴DC−CE=BE−AD,即DE=BE−AD,故答案为:DE=BE−AD.【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.23、见解析.【解析】
连接AC交BD与点O.由四边形AECF是平行四边形,可证OA=OC,OE=OF,又BE=DF,所以OB=OD,根据对角线互相平分的四边形是平行四边形可证结论成立.【详解】证明:连接AC交BD与点O.∵四边形AECF是平行四边形,∴OA=OC,OE=OF,∵BE=DF,∴OE+BE=OF+DF,∴OB=OD,∴四边形ABCD是平行四边形.【点睛】本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.24、(1)点坐标为;(2),;(3)存在,,或,或,【解析】
(1)证明△DFA≌△AEB(AAS),则DF=AE=3,BE=AF=1,即可求解;(2)t秒后,点D′(−7+2t,3)、B′(−3+2t,1),则k=(−7+2t)×3=(−3+2t)×1,即可求解;(3)分为平行四边形的一条边时和为平行四边形对角线时两种情况,分别求解即可.【详解】解:(1)过点、分别作轴、轴交于点、,,,,又,,,,,点坐标为;(2)秒后,点、,则,解得:,则,(3)存在,理由:设:点,点,,①在第一象
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区与医院签订合同协议
- 汽油发电机购买合同范本
- 浙江网上申请就业协议书
- 终止车辆承包合同协议书
- 高校县中托管帮扶协议书
- 法律合同解除协议书范本
- 私人财产转移协议书范本
- 瓷砖店铺转让合同协议书
- 社区矫正基地服务协议书
- 洁净室车间出租合同范本
- 品质月报表完整版本
- 【城市轨道交通安全管理的问题与优化建议探析4700字(论文)】
- 2024年南宁建宁水务投资集团有限责任公司招聘笔试冲刺题(带答案解析)
- 2024年昆山国创投资集团限公司招聘公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 手术后恶心呕吐(PONV)防治快捷指南
- 电梯维保服务售后服务方案
- 电磁屏蔽典型应用
- 砂浆送检计划书
- 伤寒论全套课件
- 盆腔脓肿诊治中国专家共识(2023版)解读
- 复读学校管理制度
评论
0/150
提交评论