浙江省金华婺城区四校联考2024年数学八年级下册期末检测模拟试题含解析_第1页
浙江省金华婺城区四校联考2024年数学八年级下册期末检测模拟试题含解析_第2页
浙江省金华婺城区四校联考2024年数学八年级下册期末检测模拟试题含解析_第3页
浙江省金华婺城区四校联考2024年数学八年级下册期末检测模拟试题含解析_第4页
浙江省金华婺城区四校联考2024年数学八年级下册期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省金华婺城区四校联考2024年数学八年级下册期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下而给出四边形ABCD中的度数之比,其中能判定四边形ABCD为平行四边形的是().A.1:2:3:4 B.1:2:2:3 C.2:2:3:3 D.2:3:2:32.某校规定学生的学期数学成绩由研究性学习成绩与期末卷面成绩共同确定,其中研究性学习成绩占40%,期末卷面成绩占60%,小明研究性学习成绩为80分,期末卷面成绩为90分,则小明的学期数学成绩是()A.80分 B.82分 C.84分 D.86分3.在平行四边形ABCD中,已知,,则它的周长为()A.8 B.10 C.14 D.164.直角三角形两条直角边分别是和,则斜边上的中线等于()A. B.13 C.6 D.5.如图圆柱的底面周长是,圆柱的高为,为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点处爬到上底面点处,那么它爬行的最短路程为()A. B. C. D.6.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD中,点E、F分别在边BC、AD上,____,求证:四边形AECF是平行四边形.你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四边形ABCD是平行四边形.其中A、B、C、D四位同学所填条件符合题目要求的是()A.①②③④ B.①②③ C.①④ D.④7.如图,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.5 C.6 D.108.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手

平均数(环)

9.2

9.2

9.2

9.2

方差(环2)

0.035

0.015

0.025

0.027

则这四人中成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁9.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3 B.﹣5 C.7 D.﹣3或﹣510.计算8×2的结果是()A.10 B.4C.6 D.211.如图,在中,于点若则等于()A. B. C. D.12.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则矩形的面积为()A.2 B.4 C. D.3二、填空题(每题4分,共24分)13.已知一组数据3,7,7,5,x的平均数是5,那么这组数据的方差是_________.14.直线y=3x+2沿y轴向下平移5个单位,则平移后的直线与y轴的交点坐标是_______.15.分解因式:m2(a﹣2)+m(2﹣a)=.16.对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围_____.17.面试时,某人的基本知识、表达能力、工作态度的成绩分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是_______.18.已知关于x的方程x2-2ax+1=0有两个相等的实数根,则a=____.三、解答题(共78分)19.(8分)某厂制作甲、乙两种环保包装盒.已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少材料?(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料.20.(8分)甲、乙两名同学进入八年级后,某科6次考试成绩如图所示:平均数方差中位数众数甲7575乙33.370(1)请根据统计图填写上表:(2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析:①从平均数和方差相结合看,你得出什么结论;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?21.(8分)在平面直角坐标系xOy中,一次函数的图象与直线平行,且经过点A(1,6).(1)求一次函数的解析式;(2)求一次函数的图象与坐标轴围成的三角形的面积.22.(10分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打______个字.23.(10分)在Rt△ABC中,∠C=90°,AC=6,BC=1.在CB上找一点E,使EB=EA(利用尺规作图,保留作图痕迹),并求出此时CE的长.24.(10分)某市米厂接到加工大米任务,要求天内加工完大米.米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止,设甲、乙两车间各自加工大米数量与甲车间加工时间(天)之间的关系如图1所示;未加工大米与甲车间加工时间(天)之间的关系如图2所示,请结合图像回答下列问题(1)甲车间每天加工大米__________;=______________;(2)直接写出乙车间维修设备后,乙车间加工大米数量与(天)之间的函数关系式,并指出自变量的取值范围.25.(12分)如图所示,中,,、分别为、的中点,延长到,使.求证:四边形是平行四边形.26.如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠1.求证:四边形ABCD是矩形.

参考答案一、选择题(每题4分,共48分)1、D【解析】

由于平行四边形的两组对角分别相等,故只有D能判定是平行四边形.其它三个选项不能满足两组对角相等,故不能判定.【详解】解:根据平行四边形的两组对角分别相等,可知D正确.

故选:D.【点睛】本题考查了平行四边形的判定,运用了两组对角分别相等的四边形是平行四边形这一判定方法.2、D【解析】

利用加权平均数的计算方法直接计算即可得出答案.【详解】解:根据题意得:=86(分),答:小明的学期数学成绩是86分;故选:D.【点睛】本题考查加权平均数,解题的关键是掌握加权平均数的计算方法.3、D【解析】

根据“平行四边形的对边相等”结合已知条件进行分析解答即可.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=5,AD=BC=3,∴平行四边形ABCD的周长=AB+BC+CD+AD=5+3+5+3=16故选D.【点睛】本题考查“平行四边形的对边相等”是解答本题的关键.4、A【解析】

根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线等于.故选:A.【点睛】此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.5、C【解析】

把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=12,CB′=5,然后利用勾股定理计算出AB′即可.【详解】解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=12,CB′=5,

在Rt△ACB′,所以它爬行的最短路程为13cm.

故选:C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.6、C【解析】

由平行四边形的判定可求解.【详解】解:当添加①④时,可得四边形AECF是平行四边形,理由如下:∵四边形ABCD是平行四边形∴AD=BC,AD∥BC∵BE=DF∴AD﹣DF=BC﹣BE∴AF=EC,且AF∥CE∴四边形AECF是平行四边形.故选C.【点睛】本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.7、B【解析】

∵AD平分∠CAB,

∴点B关于AD的对称点B′在线段AC上,作B′N′⊥AB于N′交AD于M′.

∵BM+MN=B′M+MN,

∴当M与M′重合,N与N′重合时,BM+MN的值最小,最小值为B′N′,

∵AD垂直平分BB′,

∴AB′=AB=1,

∵∠B′AN′=41°,

∴△AB′N′是等腰直角三角形,

∴B′N′=1

∴BM+MN的最小值为1.

故选B.【点睛】本题考查轴对称-最短问题、垂线段最短、等腰直角三角形的判定和性质等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.8、B【解析】在平均数相同时方差越小则数据波动越小说明数据越稳定,9、A【解析】

分三种情形讨论求解即可解决问题;【详解】解:对于函数y=|x﹣a|,最小值为a+1.情形1:a+1=0,a=﹣1,∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.∴y=|x+2|,符合题意.情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,综上所述,a=﹣2.故选A.【点睛】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.10、B【解析】试题解析:8×故选B.考点:二次根式的乘除法.11、B【解析】

根据平行四边形的性质和三角形的内角和定理求解.【详解】在中,于点∴∵∴在中,故选:B【点睛】本题考查了平行四边形的性质和三角形内角和定理,解题的关键在于把已知角转化到中求解.12、B【解析】

由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AC,然后根据勾股定理即可求出BC,进而得出矩形面积即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC=,∴矩形的面积=AB•BC=4;故选B.【点睛】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.二、填空题(每题4分,共24分)13、0.26【解析】

首先根据平均数算出x的值,然后利用方差的公式进行计算.【详解】解得:x=3故方差为0.26【点睛】本题考查数据方差的计算,务必记住方差计算公式为:14、(0,-3).【解析】

直线y=3x+2沿y轴向下平移5个单位后对应的解析式为y=3x+2-5,即y=3x-3,当x=0时,y=-3,即与y轴交点坐标为(0,-3).15、m(a﹣2)(m﹣1)【解析】试题分析:将m2(a﹣2)+m(2﹣a)适当变形,然后提公因式m(a﹣2)即可.解:m2(a﹣2)+m(2﹣a),=m2(a﹣2)﹣m(a﹣2),=m(a﹣2)(m﹣1).16、m>1【解析】

根据图象的增减性来确定(m﹣1)的取值范围,从而求解.【详解】解:∵一次函数y=(m﹣1)x+1,若y随x的增大而增大,∴m﹣1>2,解得,m>1.故答案是:m>1.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.17、84分【解析】

根据加权平均数的计算公式进行计算,即可得出答案.【详解】根据题意得:90×20%+80×40%+85×40%=84(分);故答案为84分.【点睛】本题考查的是加权平均数,熟练掌握加权平均数的计算公式是解题的关键.18、【解析】

根据方程的系数结合根的判别式△=0,可得出关于a的一元二次方程,解之即可得出结论.【详解】解:∵关于x的方程x2-2ax+1=0有两个相等的实数根,∴△=(-2a)2-4×1×1=0,解得:a=±1.故答案为:±1.【点睛】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的两个实数根”是解题的关键.三、解答题(共78分)19、甲盒用1.6米材料;制作每个乙盒用1.5米材料;l=1.1n+1511,1711.【解析】

首先设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料,根据乙的数量-甲的数量=2列出分式方程进行求解;根据题意得出n的取值范围,然后根据l与n的关系列出函数解析式,根据一次函数的增减性求出最小值.【详解】解:(1)设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料由题可得:解得x=1.5(米)经检验x=1.5是原方程的解,所以制作甲盒用1.6米答:制作每个甲盒用1.6米材料;制作每个乙盒用1.5米材料(2)由题∴∵,∴l随n增大而增大,∴当时,考点:分式方程的应用,一次函数的性质.20、(1)见解析;(2)①见解析;②见解析.【解析】

(1)从折线统计图中读取甲、乙两人六次成绩并按照从大到小的顺序重新排列,甲:60、65、75、75、80、95,乙:70、70、70、75、80,85,根据平均数、众数、中位数、方差等概念分别算出甲的众数、方差,乙的平均数、中位数,再将题中表格填充完整即可;(2)①按照方差的意义即方差描述波动程度来解答即可;②从折线统计图的走向趋势来分析即可得出答案.【详解】(1)由图可知:甲的六次考试成绩分别为:60、65、75、75、80、95(按从小到大的顺序重新排列),乙的六次考试成绩分别为:70、70、70、75、80,85(按从小到大的顺序重新排列),故甲的众数是75,乙的中位数是×(70+75)=72.5,甲的方差=×[]=×(225+100+0+0+25+400)=×750=125,乙的平均数=×(85+70+70+75+80+80)=×450=75;将题中表格填充完整如下表:平均数方差中位数众数甲751257575乙7533.372.570(2)①从平均数和方差相结合看:甲、乙两名同学的平均数相同,但甲成绩的方差为125,乙同学成绩的方差为33.3,因此乙同学的成绩更为稳定;(符合题意即可)②从折线图中甲、乙两名同学分数的走势上看,乙同学的6次成绩有时进步,有时退步,而甲的成绩一直是进步的.【点睛】本题考查了方差,中位数,众数,平均数,从统计图分析数据的集中趋势等,熟练掌握相关概念以及求解方法是解题的关键.21、(1)y=2x+4;(2)直线y=2x+4与坐标轴围成的三角形的面积为【解析】

(1)根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.(2)先求出与x轴及y轴的交点坐标,然后根据三角形面积公式求解即可.【详解】(1)∵一次函数y=kx+b的图象为直线,且与直线y=2x平行,∴k=2又知其过点A(1,6),∴2+b=6∴b=4.∴一次函数的解析式为y=2x+4(2)当x=0时,y=4,可知直线y=2x+4与y轴的交点为(0,4)当y=0时,x=-2,可知直线y=2x+4与x轴交点为(-2,0)可得该直角三角形的两条直角边长度分别为4和2.所以直线y=2x+4与坐标轴围成的三角形的面积为【点睛】本题考查待定系数法求函数解析式及三角形的面积的知识,关键是正确得出函数解析式及坐标与线段长度的转化.22、45【解析】设乙每分钟打字x个,甲每分钟打个,根据题意可得:,去分母可得:,解得,经检验可得:,故答案为:45.23、CE=【解析】

作AB的垂直平分线交BC于E,则根据线段垂直平分线的性质得到EA=EB,设CE=x,则EA=EB=1-x,利用勾股定理得到62+x2=(1-x)2,然后解方程即可.【详解】如图,点E为所作;设CE=x,则EA=EB=1-x,在R

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论